【題目】某校從參加高一年級(jí)期末考試的學(xué)生中抽出40名學(xué)生,將其成績(均為整數(shù))分成六段后畫出如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求第四小組的頻率,并補(bǔ)全頻率分布直方圖;
(2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(3)從成績是~分及~分的學(xué)生中選兩人,記他們的成績?yōu)?/span>,求滿足“”的概率.
【答案】(1),直方圖見解析;(2);(3) .
【解析】試題分析:(1)由頻率分布的直方圖可得,第四小組的頻率等于減去其它小組的頻率,由第四個(gè)小矩形的高等于頻率除以組距即可補(bǔ)全頻率分布直方圖;(2)這次考試的及格的頻率等于分以上各個(gè)組的頻率之和,此值即為及格的概率,用各個(gè)組的平均值乘以該組的頻率求和即得所求的平均分;(3)由頻率分步直方圖可得,成績是~分的有人,~分的學(xué)生有人,列舉滿足“”的選法有種,而所有的取法有種,跟據(jù)古典概型概率公式可得“”的概率.
試題解析:(1)由頻率分布直方圖可知第小組的頻率分別為:,所以第 4 小組的頻率為:.∴在頻率分布直方圖中第4小組的對(duì)應(yīng)的矩形的高為,對(duì)應(yīng)圖形如圖所示:
(2)∵考試的及格率即60分及以上的頻率 .
∴及格率為
又由頻率分布直方圖有平均分為:
(3)設(shè)“成績滿足”為事件
由頻率分布直方圖可求得成績?cè)?/span>分及分的學(xué)生人數(shù)分別為4人和2人,記在分?jǐn)?shù)段的4人的成績分別為,分?jǐn)?shù)段的2人的成績分別為,則從中選兩人,其成績組合的所有情況有:共 15種,且每種情況的出現(xiàn)均等可能。若這2人成績要滿足“”,則要求一人選自分?jǐn)?shù)段,另一個(gè)選自分?jǐn)?shù)段,有如下情況:,共 8 種,所以由古典概型概率公式有
,即所取2人的成績滿足“”的概率是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,過分別作曲線與的切線,且與關(guān)于軸對(duì)稱,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù))
(1)設(shè)過點(diǎn)的直線與曲線相切于點(diǎn),求的值;
(2)若函數(shù)的圖象與函數(shù)的圖象在內(nèi)有交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長為4的正方形的邊上有一點(diǎn)沿著折線由點(diǎn)(起點(diǎn))向點(diǎn)(終點(diǎn))運(yùn)動(dòng)。設(shè)點(diǎn)運(yùn)動(dòng)的路程為,的面積為,且與之間的函數(shù)關(guān)系式用如圖所示的程序框圖給出.
(1)寫出框圖中①、②、③處應(yīng)填充的式子;
(2)若輸出的面積值為6,則路程的值為多少?并指出此時(shí)點(diǎn)在正方形的什么位置上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對(duì)一切實(shí)數(shù)都有 成立,且.
(1)求的值;
(2)求的解析式;
(3)已知,設(shè):當(dāng)時(shí),不等式 恒成立;Q:當(dāng)時(shí),是單調(diào)函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l過點(diǎn)M(﹣1,2)且與以P(﹣2,﹣3),Q(4,0)為端點(diǎn)的線段PQ相交,則l的斜率的取值范圍是( )
A.[﹣ ,5]
B.[﹣ ,0)∪(0,5]
C.[﹣ , )∪( ,5]
D.(﹣∞,﹣ ]∪[5,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B分別是直線y=x和y=﹣x上的兩個(gè)動(dòng)點(diǎn),線段AB的長為2 ,D是AB的中點(diǎn).
(1)求動(dòng)點(diǎn)D的軌跡C的方程;
(2)若過點(diǎn)(1,0)的直線l與曲線C交于不同兩點(diǎn)P、Q,
①當(dāng)|PQ|=3時(shí),求直線l的方程;
②試問在x軸上是否存在點(diǎn)E(m,0),使 恒為定值?若存在,求出E點(diǎn)的坐標(biāo)及定值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com