16.某同學(xué)同時(shí)擲兩顆骰子,得到點(diǎn)數(shù)分別為a,b,則橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e>$\frac{{\sqrt{5}}}{3}$的概率是$\frac{5}{18}$.

分析 先求出基本事件總數(shù)n=6×6=36,由橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e>$\frac{{\sqrt{5}}}{3}$,得到a>$\frac{3}{2}b$,由此利用列舉法能求出滿足橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e>$\frac{{\sqrt{5}}}{3}$的概率.

解答 解:某同學(xué)同時(shí)擲兩顆骰子,得到點(diǎn)數(shù)分別為a,b,
基本事件總數(shù)n=6×6=36,
∵橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e>$\frac{{\sqrt{5}}}{3}$,
∴e=$\frac{\sqrt{{a}^{2}-^{2}}}{a}>\frac{\sqrt{5}}{3}$,推導(dǎo)出a>$\frac{3}{2}b$,
∴滿足橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e>$\frac{{\sqrt{5}}}{3}$的基本事件有:
(2,1),(3,1),(4,1),(4,2),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),
共有10個(gè),
∴橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e>$\frac{{\sqrt{5}}}{3}$的概率為p=$\frac{10}{36}=\frac{5}{18}$.
故答案為:$\frac{5}{18}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式和列舉法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知P(x0,y0)是橢圓C:$\frac{x^2}{4}+{y^2}=1$上的一點(diǎn),F(xiàn)1,F(xiàn)2是C的兩個(gè)焦點(diǎn),若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}<0$,則x0的取值范圍是( 。
A.$({-\frac{{2\sqrt{6}}}{3},\frac{{2\sqrt{6}}}{3}})$B.$({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$C.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$D.$({-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.6人分別擔(dān)任六種不同工作,已知甲不能擔(dān)任第一個(gè)工作,則任意分工時(shí),乙沒有擔(dān)任第二項(xiàng)工作的概率為$\frac{21}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,空間四邊形OABC中,M、N分別是對(duì)邊OA、BC的中點(diǎn),點(diǎn)G在線段MN上,分$\overrightarrow{MN}$所成的定比為2,$\overrightarrow{OG}=x\overrightarrow{OA}+y\overrightarrow{OB}+z\overrightarrow{OC}$,則x、y、z的值分別為$\frac{1}{6}$,$\frac{1}{3}$,$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在三棱錐ABCD各邊AB、BC、CD、DA上分別取E、F、G、H四點(diǎn),如果EF、GH相交于點(diǎn)P,那么(  )
A.點(diǎn)P必在直線AC上B.點(diǎn)P必在直線BD上
C.點(diǎn)P必在平面DBC內(nèi)D.點(diǎn)P必在平面ABC外

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|x+1|+|x-5|的最小值為m
(1)求m的值;
(2)若a,b,c為正實(shí)數(shù),且a+b+c=m,求證:a2+b2+c2≥12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C的對(duì)邊長(zhǎng)分別為a,b,c,且cos2B-cos2A=2sinC•(sinA-sinC).
(1)求角B的大;
(2)若$b=\sqrt{3}$,求2a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,則輸出的s值為( 。
A.$\frac{11}{6}$B.$\frac{13}{6}$C.$\frac{25}{12}$D.$\frac{29}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$|{\overrightarrow a}|=4,|{\overrightarrow b}|=5,\overrightarrow c=λ\overrightarrow a+μ\overrightarrow b(λ,μ∈$R),若$\overrightarrow a⊥\overrightarrow b,\overrightarrow c⊥({\overrightarrow b-\overrightarrow a})$,則$\frac{λ}{μ}$=$\frac{25}{16}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案