ABC的三個(gè)內(nèi)角為A、B、C,求當(dāng)A為何值時(shí),cosA+2cos
B+C2
取得最大值,并求出這個(gè)最大值.
分析:利用三角形中內(nèi)角和為π,將三角函數(shù)變成只含角A,再利用三角函數(shù)的二倍角公式將函數(shù)化為只含角
A
2
,利用二次函數(shù)的最值求出最大值
解答:解:由A+B+C=π,得
B+C
2
=
π
2
-
A
2
,
所以有cos
B+C
2
=sin
A
2

cosA+2cos
B+C
2
=cosA+2sin
A
2
=1-2sin2
A
2
+2sin
A
2

=-2(sin
A
2
-
1
2
2+
3
2

當(dāng)sin
A
2
=
1
2
,即A=
π
3
時(shí),cosA+2cos
B+C
2
取得最大值為
3
2

故最大值為
3
2
點(diǎn)評(píng):本題考查三角形的內(nèi)角和公式、三角函數(shù)的二倍角公式及二次函數(shù)最值的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的三個(gè)內(nèi)角為A、B、C,向量
m
=(
3
sinA,sinB),
n
=(cosB,
3
cosA)
,若
m
n
=1+cos(A+B)
,則C=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角三角形ABC的三個(gè)內(nèi)角為A,B,C,其對(duì)應(yīng)邊分別為a,b,c,b=2
3
,向量
m
=(cosB,cosC),
n
=(c-a,b),且
m
n
=acosB.
(Ⅰ)求角B的大。
(Ⅱ)求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的三個(gè)內(nèi)角為A,B,C,則“A>B”是“sinA>sinB”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)內(nèi)角為A,B,C,向量
m
=(sin(A+C),1-cosB)
與向量
n
=(2,0)
夾角的余弦值為
1
2
,則角B為
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案