【題目】等差數(shù)列{an}中,其前n項和為Sn , 且 ,等比數(shù)列{bn}中,其前n項和為Tn , 且 ,(n∈N*)
(1)求an , bn;
(2)求{anbn}的前n項和Mn .
【答案】
(1)解:法1:由 ,a1=1
又 ,所以a2=3或﹣1
因為a2=﹣1時, =1,故a2=﹣1舍去
所以等差數(shù)列{an)的公差d=a2﹣a1=2∴an=2n﹣1,
同樣可得b1=1,b2=3或﹣1
因為b2=3時, ,故b2=3舍去
又{bn}為等比數(shù)列,所以
法2: ,a1=1…1分 , ,(n≥2) (an﹣an﹣1)(an+an﹣1)﹣2(an+an﹣1)=0
(an﹣an﹣1﹣2)(an+an﹣1)=0,因為{an}為等差數(shù)列,
所以an﹣an﹣1﹣2=0,又a1=1∴an=2n﹣1,
又{bn}為等比數(shù)列,所以易得
(2)解:法一:Mn=a1b1+a2b2+…+anbn=1﹣3+5﹣7+…+(﹣1)n﹣1(2n﹣1)
若n為偶數(shù),則Mn=
所以Mn=﹣n
若n為奇數(shù),則結合上邊情況可得 Mn=﹣(n﹣1)+(2n﹣1)=n
綜上可得Mn=(﹣1)n﹣1n
法二:Mn=1×(﹣1)0+3×(﹣1)1+5×(﹣1)2+…+(2n﹣1)×(﹣1)n﹣1…①
﹣Mn=1×(﹣1)1+3×(﹣1)2+5×(﹣1)3+…+(2n﹣1)×(﹣1)n…②
①﹣②得:
2Mn=1+2×(﹣1)1+2×(﹣1)2+2×(﹣1)3+…+2×(﹣1)n﹣1﹣(2n﹣1)×(﹣1)n
2Mn= Mn=n×(﹣1)n﹣1
【解析】(1)法1:利用等差數(shù)列的前3項求出公差與首項,再利用通項公式即可得出.法2:利用遞推關系與等差數(shù)列的通項公式即可得出.(2)法1:利用分組求和即可得出.法2:利用“錯位相減法”與等比數(shù)列的求和公式即可得出.
【考點精析】根據(jù)題目的已知條件,利用等差數(shù)列的通項公式(及其變式)和數(shù)列的前n項和的相關知識可以得到問題的答案,需要掌握通項公式:或;數(shù)列{an}的前n項和sn與通項an的關系.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知拋物線C的方程C:y2="2" p x(p>0)過點A(1,-2).
(I)求拋物線C的方程,并求其準線方程;
(II)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠ADC=120°,AB=2CD=2,平面D1DCC1垂直平面ABCD,D1C⊥AB,M是線段AB的中點.
(Ⅰ)求證:D1M∥面B1BCC1;
(Ⅱ)若DD1=2,求平面C1D1M和平面ABCD所成的銳角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x)=2f(x+2),當x∈[0,2)時,f(x)=﹣2x2+4x.設f(x)在[2n﹣2,2n)上的最大值為an(n∈N*),且{an}的前n項和為Sn , 則Sn=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ln(x+a)(a∈R)有唯一的零點x0 , 則( )
A.﹣1<x0<﹣
B.﹣ <x0<﹣
C.﹣ <x0<0
D.0<x0<
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將圓x2+y2=1上每一點的縱坐標不變,橫坐標變?yōu)樵瓉淼? ,得曲線C. (Ⅰ)寫出C的參數(shù)方程;
(Ⅱ)設直線l:3x+y+1=0與C的交點為P1、P2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com