精英家教網 > 高中數學 > 題目詳情

【題目】在四棱錐中,底面ABCD為直角梯形,,,側面底面ABCD,

PB的中點為E,求證:平面PCD

,求二面角的余弦值.

【答案】證明見解析;

【解析】

PC的中點F,連接EF,DF,推導出四邊形ADFE是平行四邊形,,由此能證明平面PCD;

A為原點,ABx軸,ADy軸,APz軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值.

證明:如圖,取PC的中點F,連接EF,DF,

,F分別為PB,PC的中點,,,

,且,,且,

四邊形ADFE是平行四邊形,,

平面PCD平面PCD,

平面PCD

,,

平面平面,平面平面,平面,

平面

,,則、兩兩垂直,

A為原點,ABx軸,ADy軸,APz軸,建立空間直角坐標系,

、、、,

,,,

設平面BDP的法向量,

,取,得,

設平面PCD的法向量,

,取,得,

設二面角的平面角為,則,

二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數,其中

(Ⅰ)當為偶函數時,求函數的極值;

(Ⅱ)若函數在區(qū)間上有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,e為自然對數的底數).

1)若,求的最大值;

2)若R上單調遞減,

①求a的取值范圍;

②當時,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|ax-2|,不等式f(x)≤4的解集為{x|-2≤x≤6}.

(1)求實數a的值;

(2)設g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐的底面為直角梯形,,°,底面,且,的中點.

(1)證明平面平面

(2)求所成角的余弦值;

(3)求平面與平面所成二面角(銳角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】首項為O的無窮數列同時滿足下面兩個條件:

;②

(1)請直接寫出的所有可能值;

(2)記,若對任意成立,求的通項公式;

(3)對于給定的正整數,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,傾斜角為的直線的參數方程為為參數).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)若直線與曲線交于,兩點,且,求直線的傾斜角.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正三棱柱的底面邊長是2,側棱長是4,的中點.中點,中點,中點,

1)計算異面直線所成角的余弦值

2)求證:平面

3)求證:面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某二手車直賣網站對其所經營的一款品牌汽車的使用年數x與銷售價格y(單位:萬元,輛)進行了記錄整理,得到如下數據:

(I)畫散點圖可以看出,zx有很強的線性相關關系,請求出zx的線性回歸方程(回歸系數精確到0.01);

(II)y關于x的回歸方程,并預測某輛該款汽車當使用年數為10年時售價約為多少.

參考公式:

參考數據:

查看答案和解析>>

同步練習冊答案