9.給n個自上而下相連的正方形著黑色或白色.當n≤4時,在所有不同的著色方案中,黑色正方形互不相鄰的著色方案如圖所示,由此推斷,當n=6時,至少有兩個黑色正方形相鄰的著色方案共有( 。┓N.
A.21B.32C.43D.54

分析 根據(jù)所給的涂色的方案,觀測相互之間的方法數(shù),得到規(guī)律,根據(jù)這個規(guī)律寫出當n取不同值時的結果數(shù);利用給小正方形涂色的所有法數(shù)減去黑色正方形互不相鄰的著色方案,得到結果.

解答 解:設n個正方形時黑色正方形互不相鄰的著色方案數(shù)為an,
由圖形知:
a1=2,
a2=3,
a3=5=2+3=a1+a2
a4=8=3+5=a2+a3
由此推斷a5=a3+a4=5+8=13,
a6=a4+a5=8+13=21,
故黑色正方形互不相鄰著色方案共有21種;
由于給6個正方形著黑色或白色,每一個小正方形有2種方法,
所以一共有2×2×2×2×2×2=26=64種方法,
由于黑色正方形互不相鄰著色方案共有21種,
所以至少有兩個黑色正方形相鄰著色方案共有64-21=43種著色方案.
故選:C.

點評 本題考查簡單的排列組合及簡單應用,考查觀察規(guī)律,找出結果的過程,是一個比較麻煩的題目,作為高考題目比前幾年的排列組合問題相對簡單點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.設f(x)=|x-1|+|x+1|,(x∈R)
(1)求證:f(x)≥2;
(2)若不等式f(x)≥$\frac{|2b+1|-|1-b|}{|b|}$對任意非零實數(shù)b恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知關于x的不等式|mx-2|+|mx+m|≥5.
(1)當m=1時,求此不等式的解集;
(2)若此不等式的解集為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.不等式|x-1|+|2x-1|≤5的解集為(  )
A.[-1,$\frac{1}{2}$)B.[-1,1]C.($\frac{1}{2}$,1]D.[-1,$\frac{7}{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.圖中的三角形稱為希爾賓斯基(Sierpinski)三角形.黑色的三角形個數(shù)依次構成一個數(shù)列,則這個數(shù)列的一個通項公式是( 。
A.an=3n-1B.an=3nC.an=3n-2nD.an=3n-1+2n-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.定義在區(qū)間[-π,2π]上的函數(shù)y=sin2x的圖象與y=cosx的圖象交點的橫坐標之和等于$\frac{5π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.直線l的極坐標方程為ρsin(θ+$\frac{π}{4}$)=a,曲線C參數(shù)方程為$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),已知C與l有且只有一個公共點.
(Ⅰ)求a的值;
(Ⅱ)過P點作平行于l的直線交C于A,B兩點,且|PA|•|PB|=3,求點P軌跡的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=x2+ax+1(a∈R).
(1)若f(x)在[0,2]上的最小值為1,求實數(shù)a的取值范圍;
(2)解關于x的不等式f(x)≥0;
(3)若關于x的方程f(f(x)-1)+f(x)=0無實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.三階行列式$|\begin{array}{l}{1}&{-2}&{3}\\{2}&{0}&{-4}\\{-1}&{5}&{4}\end{array}|$中,元素4的代數(shù)余子式的值為4.

查看答案和解析>>

同步練習冊答案