【題目】如圖,在多面體ABCDEF中,ABCD是正方形,BF平面ABCD,DE平面ABCD,BF=DE,點(diǎn)M為棱AE的中點(diǎn).

1)求證:平面BMD平面EFC

2)若AB=1,BF=2,求三棱錐A-CEF的體積.

【答案】(1)見(jiàn)解析;

(2)

【解析】

1)設(shè)ACBD交于點(diǎn)N,則NAC的中點(diǎn),可得MNEC.由線(xiàn)面平行的判定,可得MN∥平面EFC.再由BF⊥平面ABCD,DE⊥平面ABCD,且BF=DE,可得BDEF為平行四邊形,得到BDEF.由面面平行的判定,可得平面BDM∥平面EFC

2)連接EN,FN.在正方形ABCD中,ACBD,再由BF⊥平面ABCD,可得BFAC.從而得到AC⊥平面BDEF,然后代入棱錐體積公式求解.

(1)證明:設(shè)ACBD交于點(diǎn)N,則NAC的中點(diǎn),而M為AE中點(diǎn)

MNEC

MN平面EFC,EC平面EFC,

MN平面EFC

BF平面ABCD,DE平面ABCD,且BF=DE,

BFDEBF=DE,

BDEF為平行四邊形,BDEF

BD平面EFC,EF平面EFC,

BD平面EFC

MNBD=N

平面BDM平面EFC;

2)解:連接EN,FN.在正方形ABCD中,ACBD,

BF平面ABCD,BFAC

BFBD=B,

AC平面BDEF,且垂足為N,

,

三棱錐A-CEF的體積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是拋物線(xiàn)的焦點(diǎn),是拋物線(xiàn)在第一象限內(nèi)的點(diǎn),且,

(I) 點(diǎn)的坐標(biāo);

(II)為圓心的動(dòng)圓與軸分別交于兩點(diǎn),延長(zhǎng)分別交拋物線(xiàn)兩點(diǎn);

①求直線(xiàn)的斜率;

②延長(zhǎng)軸于點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)a=1時(shí),若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的長(zhǎng)軸與短軸之和為6,橢圓上任一點(diǎn)到兩焦點(diǎn), 的距離之和為4.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線(xiàn) 與橢圓交于, 兩點(diǎn), , 在橢圓上,且, 兩點(diǎn)關(guān)于直線(xiàn)對(duì)稱(chēng),問(wèn):是否存在實(shí)數(shù),使,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】天水市第一次聯(lián)考后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,

規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,

得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.


優(yōu)秀

非優(yōu)秀

合計(jì)

甲班

10



乙班


30


合計(jì)



110

1)請(qǐng)完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為成績(jī)與班級(jí)有關(guān)系;

3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從211進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào)。試求抽到9號(hào)或10號(hào)的概率。

參考公式與臨界值表:。


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)C是圓心為O半徑為1的半圓弧上從點(diǎn)A數(shù)起的第一個(gè)三等分點(diǎn),是直徑,,直線(xiàn)平面.

1)證明:;

2)若M的中點(diǎn),求證:平面

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列,其前項(xiàng)和為,滿(mǎn)足,,其中,,,.

⑴若,,),求證:數(shù)列是等比數(shù)列;

⑵若數(shù)列是等比數(shù)列,求,的值;

⑶若,且,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計(jì)劃,收集了近期前期廣告投入量(單位:萬(wàn)元)和收益(單位:萬(wàn)元)的數(shù)據(jù)。對(duì)這些數(shù)據(jù)作了初步處理,得到了下面的散點(diǎn)圖(共個(gè)數(shù)據(jù)點(diǎn))及一些統(tǒng)計(jì)量的值.為了進(jìn)一步了解廣告投入量對(duì)收益的影響,公司三位員工①②③對(duì)歷史數(shù)據(jù)進(jìn)行分析,查閱大量資料,分別提出了三個(gè)回歸方程模型:

根據(jù) ,參考數(shù)據(jù): .

(1)根據(jù)散點(diǎn)圖判斷,哪一位員工提出的模型不適合用來(lái)描述之間的關(guān)系?簡(jiǎn)要說(shuō)明理由.

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),在余下兩個(gè)模型中分別建立收益關(guān)于投入量的關(guān)系,并從數(shù)據(jù)相關(guān)性的角度考慮,在余下兩位員工提出的回歸模型中,哪一個(gè)是最優(yōu)模型(即更適宜作為收益關(guān)于投入量的回歸方程)?說(shuō)明理由;

附:對(duì)于一組數(shù)據(jù), ,…, ,其回歸直線(xiàn)的斜率、截距的最小二乘估計(jì)以及相關(guān)系數(shù)分別為:

,

其中越接近于,說(shuō)明變量的線(xiàn)性相關(guān)程度越好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)調(diào)查:人類(lèi)在能源利用與森林砍伐中使CO2濃度增加.據(jù)測(cè),2015年,2016年,2017年大氣中的CO2濃度分別比2014年增加了1個(gè)單位,3個(gè)單位,6個(gè)單位.若用一個(gè)函數(shù)模擬每年CO2濃度增加的單位數(shù)y與年份增加數(shù)x的關(guān)系,模擬函數(shù)可選用二次函數(shù)(其中為常數(shù))或函數(shù) (其中a,b,c為常數(shù)),又知2018年大氣中的CO2濃度比2014年增加了16.5個(gè)單位,請(qǐng)問(wèn)用以上哪個(gè)函數(shù)作模擬函數(shù)較好?

查看答案和解析>>

同步練習(xí)冊(cè)答案