【題目】已知點(diǎn)是拋物線的焦點(diǎn),是拋物線在第一象限內(nèi)的點(diǎn),且,

(I) 點(diǎn)的坐標(biāo);

(II)為圓心的動(dòng)圓與軸分別交于兩點(diǎn),延長(zhǎng)分別交拋物線兩點(diǎn);

①求直線的斜率;

②延長(zhǎng)軸于點(diǎn),若,求的值.

【答案】(I) (II)①

【解析】

(I)由拋物線的定義,可求出點(diǎn)的橫坐標(biāo),代入方程中,求出點(diǎn)的縱坐標(biāo);

(II) ①設(shè)直線SA的斜率為k,可設(shè)出SA直線方程,與拋物線方程聯(lián)立,求出點(diǎn)M的坐標(biāo),由題意可知:SA=SB,因此可求出直線SB的斜率,可設(shè)出直線SB的方程,同理,可以求出N點(diǎn)的坐標(biāo),代入斜率公式,求出直線的斜率;

②設(shè)出E點(diǎn)坐標(biāo),由,可得到,從而求出斜率k,求出A點(diǎn)坐標(biāo),同理求出B點(diǎn)坐標(biāo),利用余弦定理求出的值,也就求出的值。

如下圖所示:

(I)設(shè),拋物線的焦點(diǎn)為,準(zhǔn)線方程為由拋物線的定義可知,所以點(diǎn)的坐標(biāo)為(1,1);

(II) ①設(shè)直線SA的直線方程為:與拋物線方程聯(lián)立:

,設(shè),

所以,因?yàn)橐?/span>為圓心的動(dòng)圓與軸分別交于兩點(diǎn),所以SA=SB,因此直線SB的斜率為-k,同理可求出,;

②設(shè) ,

,

則直線SA的方程為A點(diǎn)坐標(biāo)為,同理B點(diǎn)坐標(biāo)為,

,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為2的正方形,平面 為等腰直角三角形,,的中點(diǎn),的中點(diǎn).

(1)求異面直線所成角的余弦值;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信紅包已經(jīng)成為中國(guó)百姓歡度春節(jié)時(shí)非常喜愛的一項(xiàng)活動(dòng).小明收集班內(nèi)20名同學(xué)今年春節(jié)期間搶到紅包金額(元)如下(四舍五入取整數(shù)):

102 52 41 121 72

162 50 22 158 46

43 136 95 192 59

99 22 68 98 79

對(duì)這20個(gè)數(shù)據(jù)進(jìn)行分組,各組的頻數(shù)如下:

Ⅰ)寫出mn的值,并回答這20名同學(xué)搶到的紅包金額的中位數(shù)落在哪個(gè)組別;

C組紅包金額的平均數(shù)與方差分別為、,E組紅包金額的平均數(shù)與方差分別為、,試分別比較、的大小;(只需寫出結(jié)論)

Ⅲ)從AE兩組所有數(shù)據(jù)中任取2個(gè),求這2個(gè)數(shù)據(jù)差的絕對(duì)值大于100的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)解關(guān)于的不等式

(2)若不等式的解集為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】研究發(fā)現(xiàn),北京 PM 2.5 的重要來源有土壤塵、燃煤、生物質(zhì)燃燒、汽車尾氣與垃圾焚燒、工業(yè)污染和二次無機(jī)氣溶膠,其中燃煤的平均貢獻(xiàn)占比約為 18%.為實(shí)現(xiàn)“節(jié)能減排”,還人民“碧水藍(lán)天”,北京市推行“煤改電”工程,采用空氣源熱泵作為冬天供暖.進(jìn)入冬季以來,該市居民用電量逐漸增加,為保證居民取暖,市供電部門對(duì)該市 100 戶居民冬季(按 120 天計(jì)算)取暖用電量(單位:度)進(jìn)行統(tǒng)計(jì)分析,得到居民冬季取暖用電量的頻率分布直方圖如圖所示.

(1)求頻率分布直方圖中的值;

(2)從這 100 戶居民中隨機(jī)抽取 1 戶進(jìn)行深度調(diào)查,求這戶居民冬季取暖用電量在[3300,3400]的概率;

(3)在用電量為[3200,3250),[3250,3300),[3300,3350),[3350,3400]的四組居民中,用分層抽樣的方法抽取 34 戶居民進(jìn)行調(diào)查,則應(yīng)從用電量在[3200,3250)的居民中抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是60名學(xué)生參加數(shù)學(xué)競(jìng)賽的成績(jī)(均為整數(shù))的頻率分布直方圖,估計(jì)這次數(shù)學(xué)競(jìng)賽的及格率(60分及以上為及格)是( )

A. 0.9 B. 0.75 C. 0.8 D. 0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分16分)

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=n2ann∈N*.

1)試求出S1S2,S3,S4,并猜想Sn的表達(dá)式;

2)用數(shù)學(xué)納法證明你的猜想,并求出an的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,在直四棱柱ABCD-ABCD中,底面ABCD為等腰梯形,AB//CD,AB=4,BC=CD=2,AA=2,E、E分別是棱AD、AA的中點(diǎn).

1)設(shè)F是棱AB的中點(diǎn),證明:直線EE//平面FCC;

2)證明:平面D1AC平面BB1C1C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDEF中,ABCD是正方形,BF平面ABCD,DE平面ABCDBF=DE,點(diǎn)M為棱AE的中點(diǎn).

1)求證:平面BMD平面EFC

2)若AB=1,BF=2,求三棱錐A-CEF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案