13.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積等于( 。
A.16cm3B.20cm3C.24cm3D.28cm3

分析 幾何體為三棱柱去掉一個三棱錐后的幾何體,底面是直角三角形,直角邊分別為3,4,側(cè)面的高為5,被截取的棱錐的高為3.如圖所示.

解答 解:幾何體為三棱柱去掉一個三棱錐后的幾何體,底面是直角三角形,直角邊分別為3,4,側(cè)面的高為5,被截取的棱錐的高為3.如圖:
V=V棱柱-V棱錐=$\frac{1}{2}$×3×4×5-$\frac{1}{3}×\frac{1}{2}×3×4×3$=24(cm3),
故選:C

點評 本題考查了三棱錐與三棱柱的三視圖及其體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$cosα=\frac{1}{7},cos(α+β)=-\frac{11}{14}$,且$α,β∈(0,\frac{π}{2})$,則cosβ=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.記集合A={(x,y)|x2+y2≤1}和集合A={(x,y)|x+y≤1,x>0,y<0}表示的平面區(qū)域分別為Ω1,Ω2,若在區(qū)域Ω1內(nèi)任取一點M(x,y),則點M落在區(qū)域Ω2內(nèi)的概率為( 。
A.$\frac{1}{2π}$B.$\frac{1}{π}$C.$\frac{2}{π}$D.$\frac{1}{3π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow{m}$=(2sin(ωx+$\frac{π}{3}$),1),$\overrightarrow{n}$=(2cosωx,-$\sqrt{3}$)(ω>0),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的兩條相鄰對稱軸間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[-$\frac{5π}{6}$,$\frac{π}{12}$]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知數(shù)列{an}滿足3${\;}^{{a}_{n+1}}$=9•3${\;}^{{a}_{n}}$,(n∈N*)且a2+a4+a6=9,則log${\;}_{\frac{1}{3}}$(a5+a7+a9)=(  )
A.-$\frac{1}{3}$B.3C.-3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論錯誤的是( 。
A.異面直線AD與CB1角為60°B.BD∥平面CB1D1
C.AC1⊥BDD.AC1⊥平面CB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知等差數(shù)列{an}的前n項和為Sn,若$\overrightarrow{OB}$=a7$\overrightarrow{OA}$+a2006$\overrightarrow{OC}$,且A、B、C三點共線(該直線不過點O),則S2012等于( 。
A.1006B.2012C.22012D.2-2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標(biāo)系中,以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點M的極坐標(biāo)為(2$\sqrt{2}$,$\frac{π}{4}$),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù)).
(1)直線l過M且與曲線C相切,求直線l的極坐標(biāo)方程;
(2)點N與點M關(guān)于y軸對稱,求曲線C上的點到點N的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞增的是(  )
A.y=-|x|B.y=-x2+1C.y=x3D.y=-$\frac{1}{|x|}$

查看答案和解析>>

同步練習(xí)冊答案