(本小題滿分12分)某公司今年年初用25萬元引進一種新的設(shè)備,投入設(shè)備后每年收益為21萬元.同時,公司每年需要付出設(shè)備的維修和工人工資等費用,第一年各種費用2萬元,第二年各種費用4萬元,以后每年各種費用都增加2萬元.
(1)引進這種設(shè)備后,第幾年后該公司開始獲利;
(2)這種設(shè)備使用多少年,該公司的年平均獲利最大?


解:
(1)由題意知,每年的費用是以2為首項,2為公差的等差數(shù)列,設(shè)純收入與年數(shù)n的關(guān)系為f(n),則f(n)=21n-[2n+]-25=20n-n2-25……………………3分
由f(n)>0得n2-20n+25<0  解得
又因為n,所以n=2,3,4,……18.即從第2年該公司開始獲利……………………6分
(2)年平均收入為=20-………………………………9分
當且僅當n=5時,年平均收益最大.所以這種設(shè)備使用5年,該公司的年平均獲利最大…12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的方程為:,其焦點在軸上,離心率.
(1)求該橢圓的標準方程;
(2)設(shè)動點滿足,其中M,N是橢圓上的點,直線OM與ON的斜率之積為,求證:為定值.
(3)在(2)的條件下,問:是否存在兩個定點,使得為定值?若存在,給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本題滿分16分)
點A、B分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,
(1)求點P的坐標;
(2)設(shè)M是橢圓長軸AB上的一點,M到直線AP的距離等于,求點M的坐標;
(3)在(2)的條件下,求橢圓上的點到點M的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)
設(shè)橢圓)經(jīng)過點,其離心率與雙曲線的離心率互為倒數(shù).
(Ⅰ)求橢圓的方程;(注意橢圓的焦點在軸上哦!)
(Ⅱ) 動直線交橢圓兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)已知橢圓的焦點坐標為,長軸等于焦距的2倍.
(1)求橢圓的方程;
(2)矩形的邊軸上,點、落在橢圓上,求矩形繞軸旋轉(zhuǎn)一周后所得圓柱體側(cè)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C:,它的離心率為.直線與以原點為圓心,以C的短半軸為半徑的圓O相切. 求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
⑴求橢圓C的方程;
⑵設(shè),、是橢圓上關(guān)于軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,求直線的斜率的取值范圍;
⑶在⑵的條件下,證明直線軸相交于定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓(m>n>0)和雙曲線(a>b>0)有相同的焦點F1,F(xiàn)2,P是兩條曲線的一個交點,則|PF1|·|PF2|的值是                (。
A.m-aB.C.m2-a2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓中心為坐標原點,焦點位于x軸上,分別為右頂點和上頂點,是左焦點;當時,此類橢圓稱為“黃金橢圓”,其離心率為.類比“黃金橢圓”可推算出“黃金雙曲線”的離心率為              .

查看答案和解析>>

同步練習(xí)冊答案