(本小題滿分12分)
已知橢圓經(jīng)過點,離心率為
(1)求橢圓的方程;
(2)設過定點M(0,2)的直線與橢圓交于不同的兩點,且為銳角(其中為坐標原點),求直線的斜率的取值范圍.
解:(1)由題設得       ① ,且  ②.…………2分
由①、②解得.   則橢圓的方程為=1.……………4分(2)顯然不滿足題意,可設的方程為,設.…6分
聯(lián)立

.………………8分
為銳角,
,

…………10分
,,.……………12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為,離心率,A為右頂點,K為右準線與X軸的交點,且.
(I)求橢圓的標準方程;
(II)設橢圓的上頂點為B,問是否存在直線l,使直線l交橢圓于C,D兩點,且橢圓的左焦點巧恰為ΔBCD的垂心?若存在,求出l的方程r若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)已知橢圓的長半軸長為,且點在橢圓上.
(1)求橢圓的方程;
(2)過橢圓右焦點的直線交橢圓于兩點,若,求直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

2008年9月25日下午4點30分,“神舟七號”載人飛船發(fā)射升空,其運行的軌道是以地球的中心F為一個焦點的橢圓,若這個橢圓的長軸長為2a,離心率為e,則“神舟七號”飛船到地球中心的最大距離為________ _

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本題滿分14分)已知橢圓的中心為坐標原點O,焦點在X軸上,橢圓短半軸長為1,動點  在直線上。
(1)求橢圓的標準方程
(2)求以線段OM為直徑且被直線截得的弦長為2的圓的方程;
(3)設F是橢圓的右焦點,過點F作直線OM的垂線與以線段OM為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是橢圓上的一動點,且與橢圓長軸兩頂點連線的斜率之積為,則橢圓離心率為 (    )
A. B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

給出下列命題:①橢圓的離心率,長軸長為;②拋物線的準線方程為③雙曲線的漸近線方程為;④方程的兩根可分別作為橢圓和雙曲線的離心率.
其中所有正確命題的序號是                

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

P是橢圓上的點,F(xiàn)1、F2是兩個焦點,則|PF1|·|PF2|的最大值與最小值之差是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,是橢圓上關于原點對稱的兩點,是橢圓上任意一點且直線的斜率分別為,則的最小值為,則橢圓的離心率為(  ).
A.B.C.D.

查看答案和解析>>

同步練習冊答案