13.設(shè)直線的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=-2+2t}\end{array}\right.$,它與橢圓$\frac{4{x}^{2}}{9}$+$\frac{{y}^{2}}{9}$=1的交點(diǎn)為A和B,求線段AB的長.

分析 直線的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=-2+2t}\end{array}\right.$,消去參數(shù)t化為普通方程:y=2x-4.代入橢圓可得:8x2-16x+7=0,利用一元二次方程的根與系數(shù)的關(guān)系、弦長公式即可得出.

解答 解:直線的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=-2+2t}\end{array}\right.$,消去參數(shù)t化為普通方程:y=2x-4.
代入橢圓$\frac{4{x}^{2}}{9}$+$\frac{{y}^{2}}{9}$=1,可得:8x2-16x+7=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=2,x1x2=$\frac{7}{8}$.
∴|AB|=$\sqrt{(1+{2}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{5×(4-4×\frac{7}{8})}$=$\frac{\sqrt{10}}{2}$.

點(diǎn)評 本題考查了參數(shù)方程化為普通方程、直線與橢圓相交弦長問題、一元二次方程的根與系數(shù),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知與圓C:x2+y2-2x-2y+1=0相切的直線l分別交x軸和y軸正軸于A,B兩點(diǎn),O為原點(diǎn),且|OA|=a,|OB|=b(a>2,b>2).求證:
(1)(a-2)(b-2)=2;
(2)求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),AD和過C點(diǎn)的切線互相垂直,垂足為D.
(Ⅰ)求證:AC平分∠DAB;
(Ⅱ)若AB=9,AC=6,求CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=logax-x+2(a>0,且a≠1)有且僅有兩個零點(diǎn)的充要條件是( 。
A.0<a<1B.a>1C.1<a<2D.a>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.將下列參數(shù)方程化成普通方程:
(1)$\left\{\begin{array}{l}{x=\frac{t+1}{t-1}}\\{y=\frac{2t}{{t}^{3}-1}}\end{array}\right.$;

(2)$\left\{\begin{array}{l}{x=3+15cosθ}\\{y=2+15sinθ}\end{array}\right.$(0≤θ<2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=exsinx(e是自然對數(shù)的底數(shù),e=2.71828…),若?x∈[0,$\frac{π}{2}$],f(x)≥ax,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,$\frac{1}{4}$]B.(-∞,$\frac{1}{e}$]C.(-∞,$\frac{1}{2}$]D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知數(shù)列{an}是由正數(shù)組成的等比數(shù)列,Sn為其前n項(xiàng)和.已知a2a4=16,S3=7,則S5=(  )
A.15B.17C.31D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=($\frac{1}{2-a}$)x+1+3(a<2),圖象必經(jīng)過點(diǎn)(-1,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)若正數(shù)x,y滿足x+3y=5xy,求3x+4y的最小值;
(2)已知a為正實(shí)數(shù)且a2+$\frac{b^2}{2}$=1,求a$\sqrt{1+{b^2}}$的最大值.

查看答案和解析>>

同步練習(xí)冊答案