17.某校從參加高三模擬考試的學生中隨機抽取100名學生,將其數(shù)學成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如圖部分頻率分布直方圖,其中成績在[130,150]的稱為“優(yōu)秀”,其它的稱為“一般”,觀察圖形的信息,回答下列問題:
(1)求分數(shù)在[120,130)內的人數(shù)及數(shù)學成績“優(yōu)秀”的人數(shù);
(2)用分層抽樣的方法在在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分數(shù)段在分數(shù)段[120,130)內的概率.
(3)若統(tǒng)計了這100名學生的地理成績后得到如下表格:
數(shù)學成績“優(yōu)秀”數(shù)學成績“一般”總計
地理成績“優(yōu)秀”104050
地理成績“一般”203050
總計3070100
則能否在犯錯誤的概率不超過0.05的前提下,認為“數(shù)學成績是否優(yōu)秀與地理成績是否優(yōu)秀有關系”?
下面的臨界值表供參考:
 P(K2≥k) 0.15 0.10 0.05 0.025
 k 2.072 2.706 3.841 5.024
K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(b+d)}$.

分析 (1)求出頻率,然后求解分數(shù)在[120,130)內的人數(shù)及數(shù)學成績“優(yōu)秀”的人數(shù).
(2)求出[110,120)分數(shù)段的人數(shù),[120,130)分數(shù)段的人數(shù),在[110,120)分數(shù)段內抽取2人,并分別記為m,n;在[120,130)分數(shù)段內抽取4人,并分別記為a,b,c,d;設“從樣本中任取2人,至多有1人在分數(shù)段[120,130)內”為事件A,基本事件總數(shù),求出A的事件數(shù)目;然后求解概率.
(3)求出K2,即可判斷能否在犯錯誤概率不超過0.05的前提下,認為“數(shù)學成績是否優(yōu)秀與地理成績是否優(yōu)秀有關系”.

解答 解:(1)分數(shù)在[120,130)內的頻率為
1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3;
分數(shù)在[130,150]內的頻率為
0,.25+0.05=0.3;
所以分數(shù)在[120,130)內的人數(shù)及數(shù)學成績“優(yōu)秀”的人數(shù)均為100×0.3=30.
(2)依題意,[110,120)分數(shù)段的人數(shù)為100×0.15=15(人),
[120,130)分數(shù)段的人數(shù)為100×0.3=30(人);
∵用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,
∴需在[110,120)分數(shù)段內抽取2人,并分別記為m,n;
在[120,130)分數(shù)段內抽取4人,并分別記為a,b,c,d;
設“從樣本中任取2人,至多有1人在分數(shù)段[120,130)內”為事件A,
則基本事件有(m,n),(m,a),…,(m,d),(n,a),…,
(n,d),(a,b),…,(c,d)共15種;
則事件A包含的基本事件有(m,n),(m,a),(m,b),(m,c),(m,d),
(n,a),(n,b),(n,c),(n,d)共9種;
∴P(A)=$\frac{9}{15}$=$\frac{3}{5}$.
(3)${K^2}=\frac{{100×{{({10×30-20×40})}^2}}}{30×70×50×50}≈4.762>3.841$,
所以能在犯錯誤概率不超過0.05的前提下,認為“數(shù)學成績是否優(yōu)秀與地理成績是否優(yōu)秀有關系”.

點評 本題考查獨立檢驗以及頻率分布直方圖,古典概型的應用,考查分析問題解決問題的能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知二面角α-l-β的平面角為θ,A,B∈l,AC?α,BD?β,AC⊥l,BD⊥l,若AB=AC=BD=1,CD=2,則θ=120°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如表是某班(共30人)在一次考試中的數(shù)學和物理成績(單位:分)
 學號1 23 45 678 910 1112 1314 15
 數(shù)學成績 114 106 115 77 86 90 95 86 97 79 100 78 77 113 60
 物理成績 7249 5129 5749 62 2263 2942 2137 4621
 學號 16 1718192021222324252627282930
 數(shù)學成績 89 74829564875665436464856656 51
 物理成績 65 4533282928393445353534202939
將數(shù)學成績分為兩個層次:數(shù)學Ⅰ(大于等于80分)與數(shù)學Ⅱ(低于80分),物理也分為兩個層次:物理Ⅰ(大于等于59分)與物理Ⅱ(低于59分).
(1)根據(jù)這次考試的成績完成下面2×2列聯(lián)表,并運用獨立性檢驗的知識進行探究,可否有95%的把握認為“數(shù)學成績與物理成績有關”?
 物理Ⅰ物理Ⅱ合計 
 數(shù)學Ⅰ 4  
 數(shù)學Ⅱ  15 
 合計   30
(2)從該班這次考試成績中任取兩名同學的成績,記ξ為數(shù)學與物理成績都達到Ⅰ層次的人數(shù),求ξ的分布列與數(shù)學期望.
可能用到的公式和參考數(shù)據(jù):K2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
獨立性檢驗臨界值表(部分)
 P(K2≥k0 0.150 0.1000.050 0.0250.010
 k0 2.0722.706 3.8415.024 6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.2015年7月9日21時15分,臺風“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人緊急轉移安置,5.6萬人緊急轉移安置,288間房屋倒塌,46.5千公頃農田受災,直接經濟損失12.99億元,距離路率市222千米的梅州也受到了臺風的影響,適逢暑假,小明調查了梅州某小區(qū)的50戶居民由于臺風造成的經濟損失,將收集的數(shù)據(jù)分成(0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如圖頻率直方圖:
(1)試根據(jù)頻率分布直方圖估計小區(qū)平均每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)小明向班級同學發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過4000元的居民中隨機抽出2戶進行捐款救援,設抽出損失超過8000元的居民為ξ戶,求ξ的分布列和數(shù)學期望;
(3)臺風后區(qū)委會號召小區(qū)居民為臺風重災區(qū)捐款,小明調查的50戶居民捐款情況圖,根據(jù)圖表格中所給數(shù)據(jù),分別求b,c,a+b,c+d,a+c,b+d,a+b+c+d的值,并說明是否有95%以上的把握認為捐款數(shù)額多于或少于500元和自身經濟損失是否到4000元有關?
 經濟損失不超過4000元經濟損失超過4000元合計
捐款超過500元a=30b 
捐款不超過500元cd=6 
合計   
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:臨界值表參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知極坐標的極點在平面直角坐標的原點O處,極軸與x軸的正半軸重合,且長度單位相同,若點P為曲線C:$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))上的動點,直線l的極坐標方程為ρcos(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$m(m>2)
(1)將曲線C的參數(shù)方程化為普通方程,直線l的極坐標方程化為直角坐標方程;
(2)若曲線C上有且只有一點P到直線l的距離為2,求實數(shù)m的值和點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.2015年10月29日夜里,全面放開二胎的消息一公布,迅速成為人們熱議的熱點,為此,某網站進行了一次民意調查,參與調查的網民中,年齡分布情況如圖所示:
(1)若以頻率代替概率,從參與調查的網民中隨機選取1人進行訪問,求其年齡恰好在[30,40)之間的概率;
(2)若從參與調查的網民中按照分層抽樣的方法選取100人,其中30歲以下計劃要二胎的有25人,年齡不低于30歲的計劃要二胎的有30人,請以30歲為分界線,以是否計劃要二胎的人數(shù)建立分類變量.
①填寫下列2×2列聯(lián)表:
計劃要二胎不計劃要二胎合計
30歲以下
不低于30歲
合計
②試分析是否有90%以上的把握認為計劃要二胎與年齡有關?
P(K2≥k00.150.100.05
k02.0722.7063.841
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)y=sin2x的圖象關于點($\frac{1}{2}$kπ,0),k∈Z對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列說法正確的是( 。
A.“a>b”是“a2>b2”的充分不必要條件
B.命題“?x0∈R,x02+1<0”的否定是“?x0∈R,x02+1>0”
C.關于x的方程x2+(a+1)x+a-2=0的兩實根異號的充要條件是a<1
D.若f(x)是R上的偶函數(shù),則f(x+1)的圖象的對稱軸是x=-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.正方形ABCD所在平面外一點P,有PA=PB=PC=PD=AB,則二面角P-AB-C的余弦值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步練習冊答案