6.已知a1=1,點(diǎn)(an,an+1)在函數(shù)y=2x+3的圖象上.
(Ⅰ)求證:{an+3}是等比數(shù)列;
(Ⅱ)求{an}的通項(xiàng)公式;
(Ⅲ)求數(shù)列{n(an+3)}的前n項(xiàng)和Tn

分析 (I)由點(diǎn)(an,an+1)在函數(shù)y=2x+3的圖象上,可得an+1=2an+3,變形為an+1+3=2(an+3),利用等比數(shù)列的定義及其通項(xiàng)公式即可證明.
(II)由(I)可知:an+3=4×2n-1=2n+1,即可得出.
(III)n(an+3)=n•2n+1.利用“錯(cuò)位相減法”與等比數(shù)列的求和公式即可得出.

解答 (I)證明:∵點(diǎn)(an,an+1)在函數(shù)y=2x+3的圖象上,∴an+1=2an+3,
變形為an+1+3=2(an+3),a1+3=4,
∴{an+3}是等比數(shù)列,首項(xiàng)為4,公比為2.
(II)解:由(I)可知:an+3=4×2n-1=2n+1,
∴an=2n+1-3.
(III)解:n(an+3)=n•2n+1
∴數(shù)列{n(an+3)}的前n項(xiàng)和Tn=22+2×23+…+n•2n+1,
∴2Tn=23+2×24+…+(n-1)•2n+1+n•2n+2,
∴-Tn=22+23+…+2n+1-n•2n+2=$\frac{4(1-{2}^{n})}{1-2}$-n•2n+2=(1-n)•2n+2-4,
∴Tn=(n-1)•2n+2+4.

點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”、等比數(shù)列的通項(xiàng)公式及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知Ω是由曲線y=$\sqrt{4-{x}^{2}}$與x軸圍成的封閉區(qū)域,若將質(zhì)點(diǎn)P(x,y)投入?yún)^(qū)域Ω中,則x>$\sqrt{3}$y的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知角α的終邊上一點(diǎn)P的坐標(biāo)為(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$),則sinα的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在2-$\sqrt{3}$與2+$\sqrt{3}$之間插入一個(gè)數(shù),使這三個(gè)數(shù)成等比數(shù)列,則這個(gè)數(shù)為(  )
A.±$\sqrt{2}$B.±1C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知數(shù)列{an}滿足:a1=-1,$\frac{{{a_{n+1}}}}{a_n}=\frac{1}{2}$,則數(shù)列{an}是( 。
A.遞增數(shù)列B.遞減數(shù)列C.擺動(dòng)數(shù)列D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x-x2+lnx.
(1)求出函數(shù)f(x)的導(dǎo)函數(shù);
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.曲線的參數(shù)方程為$\left\{\begin{array}{l}{x=3{t}^{2}+2}\\{y={t}^{2}-1}\end{array}\right.$(t是參數(shù)),則曲線是( 。
A.線段B.直線C.D.射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=1-ax-xlnx,g(x)=2ex,g(x)的一條切線l的方程:2x-y+m=0
(1)若l也是函數(shù)f(x)的切線,求f(x)的切點(diǎn)坐標(biāo);
(2)若方程f(x)-g(x)=2有兩個(gè)實(shí)數(shù)解,求a的取值范圍;
(3)在(1)的條件下,證明:$\frac{f(x)}{g(x)}$<$\frac{1+{e}^{2}}{2(1+x)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若函數(shù)y=sin(2x+φ)為偶函數(shù),則φ的最小正數(shù)是( 。
A.$\frac{3π}{2}$B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案