17.已知角α的終邊上一點P的坐標為(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$),則sinα的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

分析 由條件利用任意角的三角函數(shù)的定義,求得sinα的值.

解答 解:∵角α終邊上一點P的坐標是(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$),
∴x=sin$\frac{2π}{3}$,y=cos$\frac{2π}{3}$,r=|OP|=1,∴sinα=cos$\frac{2π}{3}$=-$\frac{1}{2}$.
故選:B.

點評 本題主要考查任意角的三角函數(shù)的定義,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.設y=x+$\frac{1}{x-2}$(x>2).當x=a時,y有最小值,則a的值是( 。
A.4B.3C.1+$\sqrt{3}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知數(shù)列{an}中,a1=2,an+1=3an+3n
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{an}的前n項和為Sn,求證:Sn≥2恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知tanθ=7,則sinθcosθ+cos2θ=$\frac{4}{25}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知實數(shù)x,y滿足x2+y2-4x+6y+12=0,則|2x-y-2|的最小值是5-$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在平行四邊形ABCD中,AD=2,∠BAD=60°,E為CD的中點,若$\overrightarrow{AC}•\overrightarrow{BE}=4$,則AB的長為(  )
A.1B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.一個盒子中放有大小相同的6個小球,其中白球4個,紅球2個.任取兩次,每次取一個球,每次取后不放回,已知第一次取到的是白球,則第二次也取到的是白球的概率為( 。
A.$\frac{3}{5}$B.$\frac{5}{12}$C.$\frac{2}{3}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知a1=1,點(an,an+1)在函數(shù)y=2x+3的圖象上.
(Ⅰ)求證:{an+3}是等比數(shù)列;
(Ⅱ)求{an}的通項公式;
(Ⅲ)求數(shù)列{n(an+3)}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.直線l經(jīng)過點A(-2,0),B(-5,3),則l的斜率為( 。
A.2B.-1C.0D.1

查看答案和解析>>

同步練習冊答案