分析 (1)利用兩個(gè)向量垂直的性質(zhì)求得sinθ=2cosθ.由此求得要求式子的值.
(2)根據(jù)|$\overrightarrow{a}$-$\overrightarrow$|=2,求得2cosθ-sinθ=1.再根據(jù)sin2θ+cos2θ=1,θ∈(0,$\frac{π}{2}$),求得cosθ和sinθ 的值,可得sinθ,2cosθ的值.
解答 (1)由$\overrightarrow{a}$⊥$\overrightarrow$可知,$\overrightarrow a•\overrightarrow b=2cosθ-sinθ=0$,∴sinθ=2cosθ,
所以$\frac{sinθ-cosθ}{sinθ+cosθ}=\frac{2cosθ-cosθ}{2cosθ+cosθ}=\frac{1}{3}$.
(2)由$\overrightarrow{a}-\overrightarrow$=(cosθ-2,sinθ+1)可得,|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{{(cosθ-2)}^{2}{+(sinθ+1)}^{2}}$=$\sqrt{6-4cosθ+2sinθ}$=2,
∴2cosθ-sinθ=1.
再根據(jù)sin2θ+cos2θ=1,θ∈(0,$\frac{π}{2}$),求得 $\left\{\begin{array}{l}{sinθ=\frac{3}{5}}\\{cosθ=\frac{4}{5}}\end{array}\right.$,或 $\left\{\begin{array}{l}{sinθ=-1}\\{cosθ=0}\end{array}\right.$(舍去),
故只有cosθ=$\frac{4}{5}$,sinθ=$\frac{3}{5}$,∴sinθ=$\frac{3}{5}$,2cosθ=$\frac{8}{5}$.
點(diǎn)評(píng) 本題主要考查兩個(gè)向量垂直的性質(zhì),求向量的模,同角三角函數(shù)的基本關(guān)系,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,-1] | B. | [-2,-1] | C. | [2,3] | D. | (-2,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com