A
分析:由于關于x的不等式x2-2ax+a>0的解集為R?0<a<1,且{a|0<a<1}?{a|0≤a≤1},結(jié)合集合關系的性質(zhì),不難得到結(jié)論.
解答:∵關于x的不等式x2-2ax+a>0的解集為R,
∴函數(shù)f(x)=x2-2ax+a的圖象始終在X軸上方,即△<0,
∴(-2a)2-4a<0,解得:0<a<1,
又{a|0<a<1}?{a|0≤a≤1},則p?q為真命題且q?p為假命題,
所以“關于x的不等式x2-2ax+a>0的解集為R”是“0≤a≤1”充分不必要條件.
故答案選 A.
點評:本題考查的知識點是:判斷充要條件的方法是:
①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;
②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;
③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;
④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件;
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.
對四個答案逐一進行判斷,不難得到正確的結(jié)論.