2.已知a,b是平面α內(nèi)的兩條不同直線,直線l在平面α外,則l⊥a,l⊥b是l⊥α的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)空間線面垂直的判定定理和定義,結(jié)合充要條件的定義,可得結(jié)論.

解答 解:若l⊥α,則l⊥a,l⊥b,
故l⊥a,l⊥b是l⊥α的必要條件;
但l⊥a,l⊥b時,l⊥a不一定成立,
故l⊥a,l⊥b是l⊥α的不充分條件;
綜上可得:l⊥a,l⊥b是l⊥α的必要不充分條件,
故選:B

點評 本題考查的知識點是空間中直線與直線的位置關(guān)系,直線與平面的位置關(guān)系,充要條件,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求函數(shù)f(x)=x2的圖象與直線f(x)=2x的交點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x∈R|0<ax+1≤5},B={x∈R|$\frac{1}{2}$<x+1≤2}(a≠0)
(1)A,B能否相等?若能,求出實數(shù)a的值;若不能,試說明理由;
(2)若命題p:x∈A,命題q:x∈B,且p是q充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列函數(shù)中,最小值為2的是( 。
A.y=$\frac{1}{x}$+x (x<0)B.y=$\frac{1}{x}$+1 (x≥1)C.y=$\sqrt{x}$+$\frac{4}{\sqrt{x}}$-2  (x>0)D.y=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+cosx+a(a∈R,a是常數(shù)).
(1)求函數(shù)f(x)的最小正周期;
(2)若a=0,作出y=f(x)在[-π,π]上的圖象;
(3)若x∈[-$\frac{π}{2}$,$\frac{π}{2}$]時,f(x)的最大值為1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若f(lgx)=$\frac{x+1}{x-1}$,則f(2)=(  )
A.$\frac{101}{99}$B.3C.$\frac{99}{101}$D.$\frac{99}{100}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線C1:y2=4x,過焦點F的直線l交C1于A,B兩點.
(1)若線段AB的中點為M,求點M的軌跡方程;
(2)若△AOB的面積為S(O為坐標(biāo)原點),求證:$\frac{{S}^{2}}{|AB|}$為定值,并求出此定值;
(3)以AB為直徑的圓與y軸交于C,D兩點,求|CD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow a=({2,3})$,$\overrightarrow b=({-2,4})$,則$({\overrightarrow a+\overrightarrow b})•({\overrightarrow a-\overrightarrow b})$=( 。
A.33B.-3C.7D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合$M=\{x|y={log_2}x\},N=\{y|y=\sqrt{x-1}\}$,那么M∩N=( 。
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

同步練習(xí)冊答案