11.△ABC的內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別是a,b,c,且b=4,c=1,A=2B,則sin2B的值是( 。
A.$\frac{\sqrt{55}}{8}$B.$\frac{\sqrt{55}}{9}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

分析 根據(jù)正弦定理和二倍角的正弦公式化簡(jiǎn)得a=8cosB,利用余弦定理表示出cosB并化簡(jiǎn),求出a和cosB的值,由平方關(guān)系和B的范圍求出sinB,由正弦定理求出sinA的值,即可得到sin2B的值.

解答 解:∵b=4,c=1,A=2B,
∴由正弦定理得$\frac{a}{sinA}=\frac{sinB}$,則$\frac{a}{sin2B}=\frac{4}{sinB}$,

即$\frac{a}{2sinBcosB}=\frac{4}{sinB}$,化簡(jiǎn)得a=8cosB,
由余弦定理得,a=8•$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$,
∴a2=4(a2-15),解得a=$2\sqrt{5}$,則cosB=$\frac{\sqrt{5}}{4}$,
由0<B<π得,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{11}}{4}$,
由$\frac{a}{sinA}=\frac{sinB}$得,sinA=$\frac{a•sinB}$=$\frac{2\sqrt{5}•\frac{\sqrt{11}}{4}}{4}$=$\frac{\sqrt{55}}{8}$,
∴sin2B的值是$\frac{\sqrt{55}}{8}$,
故選:A.

點(diǎn)評(píng) 本題考查正弦定理、余弦定理,二倍角的正弦公式等,注意內(nèi)角的范圍,考查化簡(jiǎn)、變形能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.統(tǒng)計(jì)甲、乙兩名運(yùn)動(dòng)員9場(chǎng)比賽得分情況得到莖葉圖如圖所示,設(shè)甲、乙得分平均數(shù)分別為$\overline{x}$,$\overline{y}$,中位數(shù)分別為m,n,則下列判斷正確的是( 。
A.$\overline{x}$<$\overline{y}$,m<nB.$\overline{x}$>$\overline{y}$,m<nC.$\overline{x}$>$\overline{y}$,m>nD.$\overline{x}$<$\overline{y}$,m>n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知球的直徑是6,則該球的體積是36π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知x>1,y>2,(x-1)(y-2)=4,則x+y的最小值是(  )
A.5B.7C.3+$\sqrt{17}$D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.一個(gè)正四棱柱的頂點(diǎn)均在半徑為1的球面上,當(dāng)正四棱柱的側(cè)面積取得最大值時(shí),正四棱柱的底面邊長(zhǎng)為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合A={x|x2-x-2>0},B={x|y=ln(1-x)},則(∁RA)∩B=(  )
A.a,b,cB.(1,2]C.[-1,1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.化簡(jiǎn)cos2α+sin2αcos2α+sin4α=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.拋物線y=2x2的一組斜率為k的平行弦的中點(diǎn)的軌跡方程是x=$\frac{1}{4k}$(k≠0,拋物線內(nèi)部).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若平面的斜線段長(zhǎng)為4cm,它的射影長(zhǎng)為2$\sqrt{3}$cm,求這條射線所在的直線與平面所成的角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案