16.已知集合A={x|x2-x-2>0},B={x|y=ln(1-x)},則(∁RA)∩B=( 。
A.a,b,cB.(1,2]C.[-1,1)D.(-1,1)

分析 求出A中不等式的解集確定出A,求出B中x的范圍確定出B,找出A補(bǔ)集與B的交集即可.

解答 解:由A中不等式變形得:(x-2)(x+1)>0,
解得:x<-1或x>2,即A=(-∞,-1)∪(2,+∞),
∴∁RA=[-1,2],
由B中y=ln(1-x),得到1-x>0,即x<1,
∴B=(-∞,1),
則(∁RA)∩B=[-1,1),
故選:C.

點(diǎn)評(píng) 此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)y=$\sqrt{3x+6}$-$\sqrt{8-x}$值域?yàn)閇-$\sqrt{10}$,$\sqrt{30}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.己知函數(shù)f(x)=alnx+$\frac{b(x+1)}{x}$,曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程為y=2.
(1)求a、b的值;
(2)當(dāng)x>0且x≠1時(shí).求證:f(x)>$\frac{(x+1)lnx}{x-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在等比數(shù)列{an}中,設(shè)Tn=a1a2…an,n∈N*,則( 。
A.若T2n+1>0,則a1>0B.若T2n+1<0,則a1<0
C.若T3n+1<0,則a1>0D.若T4n+1<0,則a1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.△ABC的內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別是a,b,c,且b=4,c=1,A=2B,則sin2B的值是(  )
A.$\frac{\sqrt{55}}{8}$B.$\frac{\sqrt{55}}{9}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若集合M={x|x>1},N={x|x<5},則集合M∩N=( 。
A.{2,3,4}B.{x|x>1}C.{x|x<5}D.(1,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在下面給出的四個(gè)函數(shù)中,既是區(qū)間(0,$\frac{π}{2}$)上的增函數(shù),又是以π為周期的偶函數(shù)的是( 。
A.y=sinxB.y=sin2xC.y=|cosx|D.y=|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{{a{e^x}}}{x^2}$(a≠0).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=f(x)-$\frac{2}{x}$-lnx,若g(x)在區(qū)間(0,2)上有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.過(guò)正四面體ABCD的頂點(diǎn)A作一個(gè)形狀為等腰三角形的截面,且使截面與底面BCD所成的角為75°,這樣的截面共可作出18個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案