如圖,某市擬在長為8 km的道路OP的一側(cè)修建一條運動賽道,賽道的前一部分為曲線段OSM,該曲線段位函數(shù)yAsinωx(0,ω>0)x[04]的圖像,且圖像的最高點位S(3,2);賽道的后一部分為折線段MNP,為保證參賽運動員的安全,限定∠MNP120°

()A,ω的值和M,P兩點間的距離;

()應(yīng)如何設(shè)計,才能使折線段賽道MNP最長?

答案:
解析:


提示:

本小題主要考查三角函數(shù)的圖象與性質(zhì)、解三角形等基礎(chǔ)知識,考查運算求解能力以及應(yīng)用數(shù)學(xué)知識分析和解決實際問題的能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,某市擬在長為16km的道路OP的一側(cè)修建一條自行車賽道,賽道的前一部分為曲線OSM,該曲線段為函數(shù)y=Asinωx(A>0,ω>0,x∈[0,8]的圖象,且圖象的最高點為S(6,4
3
).賽道的后一段為折線段MNP,為保證參賽隊員的安全,限定∠MNP=120°.
(1)求實數(shù)A和ω的值以及M、P兩點之間的距離;
(2)連接MP,設(shè)∠NPM=θ,y=MN+NP,試求出用θ表示y的解析式;
(3)(理科)應(yīng)如何設(shè)計,才能使折線段MNP最長?
(文科)求函數(shù)y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黑龍江哈九中2012屆高三第四次模擬數(shù)學(xué)理科試題 題型:044

如圖,某市擬在長為8 km的道路OP的一側(cè)修建一條運動賽道,賽道的前一部分為曲線段OSM,該曲線段為函數(shù)y=Asinωx(A>0,ω>0),x∈[0,4]的圖象,且圖象的最高點為;賽道的后一部分為折線段MNP.為保證參賽運動員的安全,限定∠MNP=120°.

(1)求A,ω的值和M,P兩點間的距離;

(2)應(yīng)如何設(shè)計,才能使折線段線段MNP最長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黑龍江哈九中2012屆高三第四次模擬數(shù)學(xué)文科試題 題型:044

如圖,某市擬在長為8 km的道路OP的一側(cè)修建一條運動賽道,賽道的前一部分為曲線段OSM,該曲線段為函數(shù)的圖象,且圖象的最高點為;賽道的后一部分為折線段MNP.為保證參賽運動員的安全,限定∠MNP=120°.

(1)求A,ω的值和M,P兩點間的距離;

(2)應(yīng)如何設(shè)計,才能使折線段線段MNP最長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市黃浦區(qū)高考數(shù)學(xué)一模試卷(文理合卷)(解析版) 題型:解答題

如圖,某市擬在長為16km的道路OP的一側(cè)修建一條自行車賽道,賽道的前一部分為曲線OSM,該曲線段為函數(shù)y=Asinωx(A>0,ω>0,x∈[0,8]的圖象,且圖象的最高點為S(6,4).賽道的后一段為折線段MNP,為保證參賽隊員的安全,限定∠MNP=120°.
(1)求實數(shù)A和ω的值以及M、P兩點之間的距離;
(2)連接MP,設(shè)∠NPM=θ,y=MN+NP,試求出用θ表示y的解析式;
(3)(理科)應(yīng)如何設(shè)計,才能使折線段MNP最長?
(文科)求函數(shù)y的最大值.

查看答案和解析>>

同步練習(xí)冊答案