4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-|x|,x≤1}\\{(x-1)^{2},x>1}\end{array}\right.$,函數(shù)g(x)=$\frac{4}{5}$-f(1-x),則y=f(x)-g(x)零點(diǎn)的個(gè)數(shù)為4.

分析 求出函數(shù)f(1-x)的解析式,推出f(x)-g(x)的表達(dá)式,然后求解函數(shù)的零點(diǎn).

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{1-|x|,x≤1}\\{(x-1)^{2},x>1}\end{array}\right.$,$f(1-x)=\left\{\begin{array}{l}1-|1-x|,x≥0\\{x^2},x<0\end{array}\right.$,
則$f(x)+f(1-x)=\left\{\begin{array}{l}{x^2}+x+1,x<0\\ 1,0≤x≤1\\{x^2}-3x+3,x>1\end{array}\right.$,
令f(x)-g(x)=0,
可得$f(x)+f(1-x)=\frac{4}{5}$,
畫出y=f(1-x)+f(x)與y=$\frac{4}{5}$的圖象如圖所示:
由圖可得:y=f(1-x)+f(x)與y=$\frac{4}{5}$有4個(gè)交點(diǎn)
故y=f(x)-g(x)有4個(gè)零點(diǎn).
故答案為:4.

點(diǎn)評(píng) 本題考查函數(shù)的解析式的應(yīng)用,函數(shù)的零點(diǎn)的求法,考查數(shù)形結(jié)合,轉(zhuǎn)化思想的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$\overrightarrow{a}$=(x,-2x),$\overrightarrow$=(x-1,3)且$\overrightarrow{a}$∥$\overrightarrow$,則x等于( 。
A.-$\frac{1}{2}$B.0C.-$\frac{1}{2}$或0D.0或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(理) 如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,點(diǎn)E在C1C上,且C1E=3EC.
(1)證明A1C⊥平面BED;
(2)求點(diǎn)A1到面BED的距離
(3)求二面角A1-DE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中真命題是( 。
A.若z1+z2=0,則z1,z2共軛B.若z1+z2=0,則${z_2},\overline{z_1}$共軛
C.若z1-z2=0,則z1,z2共軛D.若z1-z2=0,則${z_2},\overline{z_1}$共軛

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若f(x)=$\frac{x}{(x+1)(x-a)}$為奇函數(shù),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列說法中,正確的是( 。
A.命題“若am2<bm2,則a<b”的逆命題是真命題
B.已知x∈R,則“x2-2x-3=0”是“x=3”的必要不充分條件
C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”
D.命題p:?x∈R,x>sinx的否定形式為?x∈R,x≤sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知鈍角△ABC的三邊a=t-1,b=t+1,c=t+3,求t的取值范圍(3,7).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在數(shù)列{an}中,a1=a(a≠0,a≠1),數(shù)列{an}的前n項(xiàng)和Sn,且Sn=$\frac{a}{1-a}$(1-an),
(1)求證:{an}是等比數(shù)列;
(2)記bn=anlg|an|(n∈N*),當(dāng)a=-$\frac{{\sqrt{7}}}{3}$時(shí),是否存在正整數(shù)m,使得對(duì)于任意正整數(shù)n,都有bn≥bm?如果存在,求出m的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知直線m,n不重合,平面α,β不重合,下列命題正確的是( 。
A.若m?β,n?β,m∥α,n∥α,則α∥βB.若m?α,m?β,α∥β,則m∥n
C.若α⊥β,m?α,n?β,則m⊥nD.若m⊥α,n?α,則m⊥n

查看答案和解析>>

同步練習(xí)冊(cè)答案