14.已知直線m,n不重合,平面α,β不重合,下列命題正確的是( 。
A.若m?β,n?β,m∥α,n∥α,則α∥βB.若m?α,m?β,α∥β,則m∥n
C.若α⊥β,m?α,n?β,則m⊥nD.若m⊥α,n?α,則m⊥n

分析 利用直線與平面,平面與平面、平行、垂直以及異面直線的位置關(guān)系,判斷四個(gè)選項(xiàng)的正誤,即可.

解答 解:若m?β,n?β,m∥α,n∥α,則α∥β或α與β相交,所以A項(xiàng)不正確;
若m?α,m?β,α∥β,則m∥n或m,n異面;所以B項(xiàng)不正確;
若α⊥β,m?α,n?β,則m與n的位置關(guān)系可能是平行、相交或異面,所以C項(xiàng)不正確;
若m⊥α,則直線m垂直于平面α內(nèi)的任何一條直線,所以由n?α,可得m⊥n,所以D項(xiàng)正確;
故選:D.

點(diǎn)評(píng) 本題考查空間直線與平面、直線與直線,平面與平面的位置關(guān)系的綜合應(yīng)用,考查空間想象能力以及邏輯推理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-|x|,x≤1}\\{(x-1)^{2},x>1}\end{array}\right.$,函數(shù)g(x)=$\frac{4}{5}$-f(1-x),則y=f(x)-g(x)零點(diǎn)的個(gè)數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=$\frac{2}{3}{a_n}$+n-4,bn=(-1)n(an-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).
(1)當(dāng)a3=0時(shí),求λ的值;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(3)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和,是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某三棱錐的三視圖如圖所示,則該三棱錐的體積是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.過點(diǎn)P(2,1)作直線l交x,y正半軸于A,B兩點(diǎn),當(dāng)|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|取到最小值時(shí),直線l的方程是(  )
A.x+y-3=0B.x+2y-4=0C.x-y+3=0D.x-2y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=2cos2x+2$\sqrt{3}$sinxcosx+m.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)若x∈[0,$\frac{π}{2}$],是否存在實(shí)數(shù)m,使函數(shù)f(x)的值域恰為[${\frac{1}{2}$,$\frac{7}{2}}$]?若存在,請(qǐng)求出m的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.化簡(jiǎn)(${\frac{81}{16}}$)${\;}^{\frac{3}{4}}}$=$\frac{27}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖是函數(shù)f(x)的圖象,OC段是射線,而OBA是拋物線的一部分,試寫出f(x)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.當(dāng)輸入x=1,y=2時(shí),如圖中程序運(yùn)行后輸出的結(jié)果為( 。
A.5,2B.1,2C.5,-1D.1,-1

查看答案和解析>>

同步練習(xí)冊(cè)答案