(本小題共13分)

  如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線AB⊥x軸于點(diǎn)C,,動點(diǎn)M到直線AB的距離是它到點(diǎn)D的距離的2倍。

 。↖)求點(diǎn)M的軌跡方程;

 。↖I)設(shè)點(diǎn)K為點(diǎn)M的軌跡與x軸正半軸的交點(diǎn),直線l交點(diǎn)M的軌跡于E,F(xiàn)兩點(diǎn)(E,F(xiàn)與點(diǎn)K不重合),且滿足,動點(diǎn)P滿足,求直線KP的斜率的取值范圍。

  

,


解析:

 解:(I)依題意知,點(diǎn)M的軌跡是以點(diǎn)D為焦點(diǎn),直線AB為其相應(yīng)準(zhǔn)線,離心率為的橢圓  2分

  設(shè)橢圓的長軸長為2a,短軸長為2b,焦距為2c,

  又

  ∴點(diǎn)D在x軸上,且,則

  解之得:

  ∴坐標(biāo)原點(diǎn)O為橢圓的對稱中心

  ∴動點(diǎn)M的軌跡方程為                 4分

 。↖I)設(shè),直線EF的方程為,代入

                       5分

  

             6分

  ,K點(diǎn)坐標(biāo)為(2,0)

  

  

  解得:(舍)                       8分

  設(shè),由知,

  直線KP的斜率為                10分

  當(dāng)m=0時(shí),k=0(符合題意);

  當(dāng)時(shí),

  

                        12分

  綜上所述,                     13分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共12分) 在平面直角坐標(biāo)系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),滿足向量與向量共線,且點(diǎn)An(n,an) (n∈N*)都在斜率為2的同一條直線l上. 若a1=-3,b1=10。1)求數(shù)列{an}與{ bn }的通項(xiàng)公式;

(2)求當(dāng)n取何值時(shí)△AnBnCn的面積Sn最小,并求出Sn的這個最小值。 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

  

(本小題共14分)

  四棱錐P—ABCD中,PA⊥底面ABCD,AB//CD,AD=CD=1,∠BAD=120°,PA=,∠ACB=90°。

 。↖)求證:BC⊥平面PAC;

  (II)求二面角D—PC—A的大。

 。↖II)求點(diǎn)B到平面PCD的距離。

  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)學(xué)數(shù)學(xué),其實(shí)是要使人聰明,使人的思維更加縝密,在美國廣為流傳的一道數(shù)學(xué)題目是:老板給你兩個加工資的方案。一是每年年末加一千元;二是每半年結(jié)束時(shí)加300元。請選擇一種。一般不擅長數(shù)學(xué)的人很容易選擇前者,因?yàn)橐荒昙右磺г偙葍蓚半年共加600元要多。其實(shí),由于工資累計(jì)的,時(shí)間稍長,往往第二種方案更有利。例如在第二年的年末,依第一種方案可以加得1000+2000=3000元,而第二種方案在第一年加得300+600=900元,第二年加得900+1200=2100元,總數(shù)也是900+2100=3000元。但到了第三年,第一種方案可以得到1000+2000+3000=6000元,第二種方案可以得到300+600+900+1200+1500+1800=6300元,比第一方案多了300元。第四年,第五年會更多。因此,你若會在公司干三年以上,則應(yīng)選擇第二種方案。

根據(jù)以上材料,解答以下問題:
 。1)如果在該公司干10年,問選擇第二方案比選擇第一方案多加薪多少元?
 。2)如果第二方案中得每半年加300元改成每半年加 元,問 取何值時(shí),選                                 擇第二方案總是比選擇第一方案多加薪?

查看答案和解析>>

同步練習(xí)冊答案