【題目】圖1是由正方形,直角梯形,三角形組成的一個(gè)平面圖形,其中,,將其沿,折起使得與重合,連接,如圖2.
(1)證明:圖2中的,,,四點(diǎn)共面,且平面平面;
(2)求圖2中的二面角的大小.
【答案】(1)見解析;
(2).
【解析】
(1)根據(jù)平行的傳遞性,可證明四點(diǎn)共面,要證明面面垂直,可轉(zhuǎn)化為證明線面垂直,即證明平面,轉(zhuǎn)化為證明,;
(2)過點(diǎn)作的垂線,垂足為,過點(diǎn)作的垂線,垂足為,則,,由(1)可知點(diǎn)為中點(diǎn),可以,,所在直線分別為軸、軸和軸,建立如圖所示的空間直角坐標(biāo)系,分別求兩個(gè)平面的法向量,求二面角的大小轉(zhuǎn)化為求解.
(1)證明:因?yàn)檎叫?/span>中,,梯形中,,所以,
所以,,,四點(diǎn)共面:
因?yàn)?/span>,所以,因?yàn)?/span>,,所以平面,
因?yàn)?/span>平面,所以,
在直角梯形中,,,,可求得,
同理在直角梯形中,可求得,又因?yàn)?/span>,
則,由勾股定理逆定理可知,
因?yàn)?/span>,,所以平面,
因?yàn)?/span>平面,故平面平面,
即平面平面.
(2)解:過點(diǎn)作的垂線,垂足為,過點(diǎn)作的垂線,垂足為,則,,
由(1)可知點(diǎn)為中點(diǎn),且,則,
故可以,,所在直線分別為軸、軸和軸,建立如圖所示的空間直角坐標(biāo)系,
則各點(diǎn)坐標(biāo)依次為:,,,,,,
所以,,設(shè)為平面的一個(gè)法向量,則
可取,則,
又,設(shè)為平面的一個(gè)法向量,則
可取,則,
所以,
結(jié)合圖形可知二面角的大小為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形,平面,,分別為,的中點(diǎn).
(1)證明:平面;
(2)若與平面所成的角為,,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)國(guó)際象棋棋盤(由8×8個(gè)方格組成),其中有一個(gè)小方格因破損而被剪去(破損位置不確定).“L”形骨牌由三個(gè)相鄰的小方格組成,如圖所示.現(xiàn)要將這個(gè)破損的棋盤剪成數(shù)個(gè)“L”形骨牌,則( 。
A.至多能剪成19塊“L”形骨牌
B.至多能剪成20塊“L”形骨牌
C.最多能剪成21塊“L”形骨牌
D.前三個(gè)答案都不對(duì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集,關(guān)于的不等式()的解集為.
(1)求集合;
(2)設(shè)集合,若 中有且只有三個(gè)元素,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為2,過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的右焦點(diǎn)為F,定點(diǎn),過點(diǎn)F且斜率不為零的直線l與橢圓交于A,B兩點(diǎn),以線段AP為直徑的圓與直線的另一個(gè)交點(diǎn)為Q,證明:直線BQ恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)有十二生肖,又叫十二屬相,每一個(gè)人的出生年份對(duì)應(yīng)了十二種動(dòng)物(鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬)的一種,現(xiàn)有十二生肖的吉物各一個(gè),甲、乙、丙三位同學(xué)依次選一個(gè)作為禮物,甲同學(xué)喜歡牛和馬,乙同學(xué)喜歡牛、兔、狗和羊,丙同學(xué)哪個(gè)吉祥物都喜歡,如果讓三位同學(xué)選取的禮物都滿意,那么不同的選法有( )
A. 50種B. 60種C. 70種D. 90種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)),.
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(Ⅱ)已知函數(shù)在上為增函數(shù),且,若在上至少存在一個(gè)實(shí)數(shù),使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x),g(x)=|xlnx﹣ax2|,a.
(1)討論f(x)的單調(diào)性;
(2)若g(x)在區(qū)間(1,e)有極小值,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com