分析 (1)由正弦定理,兩角和的正弦函數(shù)公式化簡已知可得2sinA•cosA=sinA,又0<A<π,即可求得cosA的值,進(jìn)而由同角三角函數(shù)基本關(guān)系式可求sinA的值,由于頂點(diǎn)在單位圓上的△ABC中,利用正弦定理可求a.
(2)利用余弦定理可得bc的值,利用三角形面積公式即可得解.
解答 解:(1)∵2acosA=ccosB+bcosC,
由正弦定理得:2sinA•cosA=sinCcosB+sinBcosC
⇒2sinA•cosA=sin(B+C)=sinA,
又∵0<A<π⇒sinA≠0,
∴2cosA=1⇒cosA=$\frac{1}{2}$.
∵A∈(0,π),
∴A=$\frac{π}{3}$.
∴由cosA=$\frac{1}{2}$⇒sinA=$\frac{\sqrt{3}}{2}$,
由于頂點(diǎn)在單位圓上的△ABC中,2R=2,利用正弦定理可得:$\frac{a}{sinA}=2$.
可得:a=2sinA=$\sqrt{3}$.…(6分)
(2)由余弦定理可得:a2=b2+c2-2bccosA⇒bc=b2+c2-a2=4-3=1.…(10分)
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$•$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$.…(12分)
點(diǎn)評 本題主要考查了正弦定理,兩角和的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,余弦定理,三角形面積公式在解三角形中的應(yīng)用,熟練掌握相關(guān)公式是解題的關(guān)鍵,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 10或11 | C. | 11 | D. | 9或10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{5\sqrt{3}}{9}$ | B. | $\frac{5\sqrt{3}}{9}$ | C. | -$\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\sqrt{3}$ | B. | -$\frac{\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com