已知log2[log2(log2x)]=0,則x 
1
2
=( 。
A、
2
B、2
C、2
2
D、4
2
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)的運算性質(zhì)即可得出.
解答: 解:∵log2[log2(log2x)]=0,
∴l(xiāng)og2(log2x)=1,
∴l(xiāng)og2x=2,
∴x=22=4.
則x 
1
2
=
4
=2.
故選:B.
點評:本題考查了對數(shù)的運算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3x2+2(a-1)x-3在(-∞,1]上遞減,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U={x|x是小于18的正質(zhì)數(shù)},A∩(∁UB)={3,5},B∩(∁UA)={7,11},(∁UA)∩(∁UB)={2,17},則A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=log 
1
2
1-ax
x-1
 為奇函數(shù),a為常數(shù).
(1)求a的值,并用函數(shù)的單調(diào)性定義證明f(x)在區(qū)間(1,+∞) 內(nèi)單調(diào)遞增;
(3)若對于區(qū)間[3,4]上的每一個的x值,不等式f(x)≥(
1
2
x+m恒成立,求實數(shù)m最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(2-x)=f(x),且當(dāng)x≥1時,f(x)=lg(x+
1
x

(1)求f(-1)的值;
(2)解不等式f(2-2x)<f(x+3);
(3)若關(guān)于x的方程f(x)=lg(
a
x
+2a)在(1,+∞)上有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個四面體的頂點在空間直角坐標系O-xyz中的坐標分別為(0,0,0),(1,1,0),(1,0,1),(0,0,a)(a<0),畫該四面體三視圖中的正視圖時,以yoz平面為投影面,得到正視圖的面積為2,則該四面體的體積為(  )
A、
1
3
B、
1
2
C、1
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式組
x2-4x+3<0
x2-6x+8<0
的解集是關(guān)于x的不等式2x2+ax-9<0解集的一個子集,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
sinx(x<1)
x+a
x-4
(x≥1)
,函數(shù)g(x)=f(x)-x有三個不同的零點,則a的取值范圍是( 。
A、-
25
4
<a<-4
B、a<-
25
4
C、a>-
25
4
D、-
25
4
<a<-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一元二次方程x2-4x+m=0沒有實數(shù)根,則m的取值范圍為( 。
A、m<2B、m>4
C、m>16D、m<8

查看答案和解析>>

同步練習(xí)冊答案