17.已知正三角形ABC的邊長(zhǎng)為2,AM是邊BC上的高,沿AM將△ABM折起,使得二面角B-AM-C的大小為90°,此時(shí)點(diǎn)M到平面ABC的距離為$\frac{\sqrt{21}}{7}$.

分析 以M為原點(diǎn),MB,MC,MA為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用向量法能求出點(diǎn)M到平面ABC的距離.

解答 解:∵正三角形ABC的邊長(zhǎng)為2,AM是邊BC上的高,
沿AM將△ABM折起,使得二面角B-AM-C的大小為90°,
∴MA、MB、MC三條直線(xiàn)兩兩垂直,AM=$\sqrt{3}$,BM=CM=1,
以M為原點(diǎn),MB,MC,MA為x軸,y軸,z軸,建立空間直角坐標(biāo)系,
則M(0,0,0),B(1,0,0),C(0,1,0),
A(0,0,$\sqrt{3}$),
$\overrightarrow{BM}$=(-1,0,0),$\overrightarrow{BA}$=(-1,0,$\sqrt{3}$),$\overrightarrow{BC}$=(-1,1,0),
設(shè)平面ABC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BA}=-x+\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{BC}=-x+y=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3}$,$\sqrt{3}$,1),
∴點(diǎn)M到平面ABC的距離為:
d=$\frac{|\overrightarrow{BM}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{\sqrt{3}}{\sqrt{7}}$=$\frac{\sqrt{21}}{7}$.
故答案為:$\frac{\sqrt{21}}{7}$.

點(diǎn)評(píng) 本題考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在三棱錐P-ABC中,PA⊥底面ABC,AB⊥BC,AB=2,AC=PA=4.
(1)求直線(xiàn)PB與平面PAC所成角的正弦值;
(2)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=x3-x+2,則曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程是( 。
A.4x-y-2=0B.4x-y+2=0C.2x-y=0D.2x-y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,2),則|$\overrightarrow{a}$$+\overrightarrow$|=$\sqrt{34}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.一元二次不等式-2x2-x+6≥0的解集為[-2,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)i為虛數(shù)單位,若a+(a-2)i為純虛數(shù),則實(shí)數(shù)a=( 。
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=x2-3x+lnx,則f(x)在區(qū)間[$\frac{1}{2}$,2]上的最小值為-2;當(dāng)f(x)取到最小值時(shí),x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某公司租地建倉(cāng)庫(kù),每月土地費(fèi)用與倉(cāng)庫(kù)到車(chē)站距離成反比,而每月貨物的運(yùn)輸費(fèi)用與倉(cāng)庫(kù)到車(chē)站距離成正比.如果在距離車(chē)站10km處建倉(cāng)庫(kù),則土地費(fèi)用和運(yùn)輸費(fèi)用分別為2萬(wàn)元和8萬(wàn)元,那么要使兩項(xiàng)費(fèi)用之和最小,倉(cāng)庫(kù)應(yīng)建在離車(chē)站( 。
A.5 km處B.4 km處C.3  km處D.2 km處

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7..已知函數(shù)$f(x)=\frac{1}{x}+lnx$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)試證明:${({1+\frac{1}{n}})^{n+1}}>e$(e=2.718…,n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案