分析 以M為原點(diǎn),MB,MC,MA為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用向量法能求出點(diǎn)M到平面ABC的距離.
解答 解:∵正三角形ABC的邊長(zhǎng)為2,AM是邊BC上的高,
沿AM將△ABM折起,使得二面角B-AM-C的大小為90°,
∴MA、MB、MC三條直線(xiàn)兩兩垂直,AM=$\sqrt{3}$,BM=CM=1,
以M為原點(diǎn),MB,MC,MA為x軸,y軸,z軸,建立空間直角坐標(biāo)系,
則M(0,0,0),B(1,0,0),C(0,1,0),
A(0,0,$\sqrt{3}$),
$\overrightarrow{BM}$=(-1,0,0),$\overrightarrow{BA}$=(-1,0,$\sqrt{3}$),$\overrightarrow{BC}$=(-1,1,0),
設(shè)平面ABC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BA}=-x+\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{BC}=-x+y=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3}$,$\sqrt{3}$,1),
∴點(diǎn)M到平面ABC的距離為:
d=$\frac{|\overrightarrow{BM}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{\sqrt{3}}{\sqrt{7}}$=$\frac{\sqrt{21}}{7}$.
故答案為:$\frac{\sqrt{21}}{7}$.
點(diǎn)評(píng) 本題考查點(diǎn)到平面的距離的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4x-y-2=0 | B. | 4x-y+2=0 | C. | 2x-y=0 | D. | 2x-y-3=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 km處 | B. | 4 km處 | C. | 3 km處 | D. | 2 km處 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com