16.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且2Sn=(an-1)(an+2),
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)數(shù)列{$\frac{(n-1)•{2}^{n}}{n{a}_{n}}$}的前n項(xiàng)和為Tn,試比較Tn與$\frac{{2}^{n+1}(18-n)-2n-2}{n+1}$的大。

分析 (1)運(yùn)用數(shù)列的遞推式:當(dāng)n=1時(shí),a1=S1,當(dāng)n≥2時(shí),an=Sn-Sn-1.可得an=n+1;
(2)求得$\frac{(n-1)•{2}^{n}}{n{a}_{n}}$=$\frac{(n-1)•{2}^{n}}{n(n+1)}$=$\frac{{2}^{n+1}}{n+1}$-$\frac{{2}^{n}}{n}$,運(yùn)用裂項(xiàng)相消求和可得Tn,再由作差法,討論n的范圍,即可得到大小關(guān)系.

解答 解:(1)當(dāng)n=1時(shí),2a1=2S1=(a1-1)(a1+2),
∵a1>0,∴a1=2.
n=2時(shí),2S2=(a2-1)(a2+2)=2(2+a2),
解得a2=3.
當(dāng)n≥2時(shí),2an=2(Sn-Sn-1)=an2-an-12+an-an-1,
∴(an+an-1)(an-an-1-1)=0,
∵an+an-1>0,∴an-an-1=1,
∴數(shù)列{an}是以2為首項(xiàng),1為公差的等差數(shù)列,
∴an=n+1;
(2)解:∵$\frac{(n-1)•{2}^{n}}{n{a}_{n}}$=$\frac{(n-1)•{2}^{n}}{n(n+1)}$=$\frac{{2}^{n+1}}{n+1}$-$\frac{{2}^{n}}{n}$,
∴Tn=$\frac{{2}^{2}}{2}$-$\frac{2}{1}$+$\frac{{2}^{3}}{3}$-$\frac{{2}^{2}}{2}$+…+$\frac{{2}^{n+1}}{n+1}$-$\frac{{2}^{n}}{n}$=$\frac{{2}^{n+1}}{n+1}$-2,
Tn-$\frac{{2}^{n+1}(18-n)-2n-2}{n+1}$=$\frac{{2}^{n+1}}{n+1}$-2-$\frac{{2}^{n+1}(18-n)-2n-2}{n+1}$
=$\frac{{2}^{n+1}(n-17)}{n+1}$,
當(dāng)n<17且n為正整數(shù)時(shí),
$\frac{{2}^{n+1}(n-17)}{n+1}$<0,∴Tn<$\frac{{2}^{n+1}(18-n)-2n-2}{n+1}$;
當(dāng)n=17時(shí),
$\frac{{2}^{n+1}(n-17)}{n+1}$=0,∴Tn=$\frac{{2}^{n+1}(18-n)-2n-2}{n+1}$;
當(dāng)n>17且n為正整數(shù)時(shí),
 $\frac{{2}^{n+1}(n-17)}{n+1}$>0,∴Tn>$\frac{{2}^{n+1}(18-n)-2n-2}{n+1}$.

點(diǎn)評(píng) 本題考查等差數(shù)列的定義的運(yùn)用,考查數(shù)列的求和方法:裂項(xiàng)相消求和,以及分類討論思想方法,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知等差數(shù)列{an}中,a1+a3+a9=20,則4a5-a7=( 。
A.20B.30C.40D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.為了解重慶某社區(qū)居民的家庭年收入和年支出的關(guān)系,隨機(jī)調(diào)查了5戶家庭,得到統(tǒng)計(jì)數(shù)據(jù)表,根據(jù)表中可得回歸直線方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=0.5,據(jù)此估計(jì),該社區(qū)一戶收入為16萬(wàn)元家庭年支出為( 。
收入x(萬(wàn)元)68101214
支出y(萬(wàn)元)678910
A.15萬(wàn)元B.14萬(wàn)元C.11萬(wàn)元D.10萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)F(x)與f(x)=lnx的圖象關(guān)于直線y=x對(duì)稱.
(Ⅰ)不等式xf(x)≥ax-1對(duì)任意x∈(0,+∞)恒成立,求實(shí)數(shù)a的最大值;
(Ⅱ)設(shè)f(x)F(x)=1在(1,+∞)內(nèi)的實(shí)根為x0,m(x)=$\left\{\begin{array}{l}{xf(x),1<x≤{x}_{0}}\\{\frac{x}{F(x)},x>{x}_{0}}\end{array}\right.$,若在區(qū)間(1,+∞)上存在m(x1)=m(x2)(x1<x2),證明:$\frac{{x}_{1}+{x}_{2}}{2}$>x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在等腰△ABC中,AB=AC=1,D是線段AC的中點(diǎn),設(shè)BD=x,△ABC的面積S=f(x),則函數(shù)f(x)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{{e}^{x+b}}{x}$過(guò)點(diǎn)(1,e).
(1)求y=f(x)的單調(diào)區(qū)間;
(2)當(dāng)x>0時(shí),求$\frac{f(x)}{x}$的最小值;
(3)試判斷方程f(x)-mx=0(m∈R且m為常數(shù))的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖四個(gè)散點(diǎn)圖中,適合用線性回歸模型擬合其中兩個(gè)變量的是( 。
A.①②B.①③C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若(x-$\frac{2}{{x}^{2}}$)n的展開式中二項(xiàng)式系數(shù)之和為64,則n等于( 。
A.5B.7C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖所示,在等腰梯形ABCD中,AD∥BC,AD=CD=AB=2,∠ABC=60°,將三角形ABD沿BD折起,使點(diǎn)A在平面BCD上的投影G落在BD上.
(1)求證:平面ACD⊥平面ABD;
(2)若E為AC的中點(diǎn),求三棱錐G-ADE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案