【題目】已知某款冰淇淋的包裝盒為圓臺(tái),盒蓋為直徑為的圓形紙片,每盒冰淇淋中包含有香草口味、巧克力口味和草莓口味冰淇淋球各一個(gè),假定每個(gè)冰淇淋球都是半徑為的球體,三個(gè)冰淇淋球兩兩相切,且都與冰淇淋盒蓋、盒底和盒子側(cè)面的曲面相切,則冰淇淋盒的體積為______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形中,,,過(guò)點(diǎn)作的垂線,交的延長(zhǎng)線于點(diǎn),.連結(jié),交于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置,如圖2.
(1)證明:平面平面;
(2)若為的中點(diǎn),為的中點(diǎn),且平面平面,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某地區(qū)某種昆蟲(chóng)產(chǎn)卵數(shù)和溫度有關(guān).現(xiàn)收集了一只該品種昆蟲(chóng)的產(chǎn)卵數(shù)(個(gè))和溫度()的7組觀測(cè)數(shù)據(jù),其散點(diǎn)圖如所示:
根據(jù)散點(diǎn)圖,結(jié)合函數(shù)知識(shí),可以發(fā)現(xiàn)產(chǎn)卵數(shù)和溫度可用方程來(lái)擬合,令,結(jié)合樣本數(shù)據(jù)可知與溫度可用線性回歸方程來(lái)擬合.根據(jù)收集到的數(shù)據(jù),計(jì)算得到如下值:
27 | 74 | 182 |
表中,.
(1)求和溫度的回歸方程(回歸系數(shù)結(jié)果精確到);
(2)求產(chǎn)卵數(shù)關(guān)于溫度的回歸方程;若該地區(qū)一段時(shí)間內(nèi)的氣溫在之間(包括與),估計(jì)該品種一只昆蟲(chóng)的產(chǎn)卵數(shù)的范圍.(參考數(shù)據(jù):,,,,.)
附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年10月,德國(guó)爆發(fā)出“芳香烴門”事件,即一家權(quán)威的檢測(cè)機(jī)構(gòu)在德國(guó)銷售的奶粉中隨機(jī)抽檢了16款(德國(guó)4款,法國(guó)8款,荷蘭4款),其中8款檢測(cè)出芳香烴礦物油成分,此成分會(huì)嚴(yán)重危害嬰幼兒的成長(zhǎng),有些奶粉已經(jīng)遠(yuǎn)銷至中國(guó).A地區(qū)聞?dòng)嵑,立即組織相關(guān)檢測(cè)員對(duì)這8款品牌的奶粉進(jìn)行抽檢,已知該地區(qū)有6家嬰幼兒用品商店在售這幾種品牌的奶粉,甲、乙、丙3名檢測(cè)員分別負(fù)責(zé)進(jìn)行檢測(cè),每人至少抽檢1家商店,且檢測(cè)過(guò)的商店不重復(fù)檢測(cè),則甲檢測(cè)員檢測(cè)2家商店的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】法國(guó)數(shù)學(xué)家布豐提出一種計(jì)算圓周率的方法——隨機(jī)投針?lè),受其啟發(fā),我們?cè)O(shè)計(jì)如下實(shí)驗(yàn)來(lái)估計(jì)的值:先請(qǐng)200名同學(xué)每人隨機(jī)寫(xiě)下一個(gè)橫、縱坐標(biāo)都小于1的正實(shí)數(shù)對(duì);再統(tǒng)計(jì)兩數(shù)的平方和小于1的數(shù)對(duì)的個(gè)數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)來(lái)估計(jì)的值.已知某同學(xué)一次試驗(yàn)統(tǒng)計(jì)出,則其試驗(yàn)估計(jì)為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的離心率是,左右焦點(diǎn)分別為,,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于,兩點(diǎn),當(dāng)直線過(guò)時(shí),的周長(zhǎng)為.
(1)求橢圓的方程;
(2)當(dāng)時(shí),求直線方程;
(3)已知點(diǎn),直線,的斜率分別為,.問(wèn)是否存在實(shí)數(shù),使得恒成立?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)為,過(guò)(M不過(guò)橢圓的頂點(diǎn)和中心)且斜率為k直線l交橢圓于兩點(diǎn),與y軸交于點(diǎn)N,且.
(1)若直線l過(guò)點(diǎn),求的周長(zhǎng);
(2)若直線l過(guò)點(diǎn),求線段的中點(diǎn)R的軌跡方程;
(3)求證:為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l:ax+ y﹣1=0與x,y軸的交點(diǎn)分別為A,B,直線l與圓O:x2+y2=1的交點(diǎn)為C,D,給出下面三個(gè)結(jié)論:①a≥1,S△AOB=;②a≥1,|AB|<|CD|;③a≥1,S△COD<.其中,所有正確結(jié)論的序號(hào)是( )
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列,記集合.
(1)對(duì)于數(shù)列,寫(xiě)出集合;
(2)若,是否存在,使得?若存在,求出一組符合條件的;若不存在,說(shuō)明理由.
(3)若,把集合中的元素從小到大排列,得到的新數(shù)列為,若,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com