【題目】、、、 為平面直角坐標系中兩兩不同的點。若,且,則稱點、調和分割點、。已知平面上點、調和分割點.則下面說法正確的是()。

A. 可能是線段的中點

B. 可能是線段 的中點

C. 、 可能同時在線段

D. 、不可能同時在線段的延長線上

【答案】D

【解析】

由已知不妨設A(0,0)、B(1,0)、C(c,0)、D(d,0),

(c,0)=λ(1,0),(d,0)=μ(1,0),

λ=cμ=d;

代入 = 2得 = 2;()

C是線段AB的中點,則c=,代入()得,d不存在,

C不可能是線段AB的中點,A錯誤;同理B錯誤;

CD同時在線段AB上,則0c1,0d1,代入()得,c=d=1,

此時CD點重合,與已知矛盾,∴C錯誤.

CD同時在線段AB的延長線上時,則λ>1.μ>1,

,這與矛盾,

所以C、D不可能同時在線段AB的延長線上.

故選D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,棱長為1的正方體中,點P是線段上的動點.當在平面,平面,平面ABCD上的正投影都為三角形時,將它們的面積分別記為,,

1)當時,________(用“=”填空);

2的最大值為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知M,N是焦點為F的拋物線y2=2px(p>0)上兩個不同的點,線段MN的中點A的橫坐標為.

(1)|MF|+|NF|的值;

(2)p=2,直線MNx軸交于點B,求點B的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,ECD的中點.

(Ⅰ)求證:BD⊥平面PAC;

(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;

(Ⅲ)棱PB上是否存在點F,使得CF∥平面PAE?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一幾何體的平面展開圖,其中四邊形為正方形,分別為的中點.在此幾何體中,給出下列結論,其中正確的結論是( )

A.平面平面B.直線平面

C.直線平面D.直線平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的左焦點為,過點的直線交橢圓于,兩點,的最大值是,的最小值是,且滿足.

(1)求橢圓的離心率;

(2)設線段的中點為,線段的垂直平分線與軸、軸分別交于,兩點,是坐標原點,記的面積為,的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱ABCA1B1C1中(側棱與底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA1,D A1B1的中點.

(1)求證:C1D平面AA1B1B

(2)當點F BB1上的什么位置時,AB1平面C1DF ?并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學高二年級組織外出參加學業(yè)水平考試,出行方式為:乘坐學校定制公交或自行打車前往,大數(shù)據(jù)分析顯示,當的學生選擇自行打車,自行打車的平均時間為 (單位:分鐘) ,而乘坐定制公交的平均時間不受影響,恒為40分鐘,試根據(jù)上述分析結果回答下列問題:

(1)當在什么范圍內時,乘坐定制公交的平均時間少于自行打車的平均時間?

(2)求該校學生參加考試平均時間的表達式:討論的單調性,并說明其實際意義.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求上的最小值;

(2)若關于的不等式有且只有三個整數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案