A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
分析 本題考查的知識點是向量在幾何中的應用,及三角形面積的性質(zhì),由△ABE與△ABC為同底不等高的三角形,故高之比即為兩個三角面積之間,連接CE并延長后,我們易得到CE與CD長度的關(guān)系,進行得到△ABE的面積與△ABC面積之比.
解答 解:連接CE并延長,交AB于D,
則$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$=$\frac{2}{3}$$\overrightarrow{AD}$+$\frac{1}{3}$$\overrightarrow{AC}$,
即$\overrightarrow{CE}$=2$\overrightarrow{ED}$,
故$\overrightarrow{CD}=3\overrightarrow{ED}$,
則△ABE的高與△ABC高之比為$\frac{1}{3}$.又兩者底邊都是AB,
則△ABE的面積與△ABC面積之比為$\frac{1}{3}$.
故選B.
點評 三角形面積性質(zhì):同(等)底同(等)高的三角形面積相等;同(等)底三角形面積這比等于高之比;同(等)高三角形面積之比等于底之比.
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=-x2-2x+12 | B. | f(x)=x2-2x+10 | C. | f(x)=-x2+2x+8 | D. | f(x)=x2+2x+6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 無窮多個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
頻數(shù) | 35 | 25 | a | 10 | b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
井號I | 1 | 2 | 3 | 4 | 5 | 6 |
坐標(x,y)(km) | (2,30) | (4,30) | (5,60) | (6,50) | (8,70) | (1,y) |
鉆井深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com