.數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對于任意,總有成等差數(shù)列.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為 ,且,求證:對任意實(shí)數(shù)(是常數(shù),=2.71828)和任意正整數(shù),總有 2;(Ⅲ) 正數(shù)數(shù)列中,.求數(shù)列中的最大項(xiàng).
(Ⅰ) (Ⅱ) 略 (Ⅲ)
(Ⅰ)解:由已知:對于,總有 ①成立∴
(n ≥ 2)② …1分
①--②得∴
∵均為正數(shù),∴(n ≥ 2) ∴數(shù)列是公差為1的等差數(shù)列…3分又n=1時,, 解得=1∴.() …5分
(Ⅱ)證明:∵對任意實(shí)數(shù)和任意正整數(shù)n,總有≤.……6分
∴
…9分
(Ⅲ)解:由已知 ,
易得 猜想 n≥2 時,是遞減數(shù)列. …11分
令
∵當(dāng)
∴在內(nèi)為單調(diào)遞減函數(shù).
由.
∴n≥2 時, 是遞減數(shù)列.即是遞減數(shù)列.
又 , ∴數(shù)列中的最大項(xiàng)為.…13分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
若實(shí)數(shù)列的前n項(xiàng)和為,則下列命題:
(1)若數(shù)列是遞增數(shù)列,則數(shù)列也是遞增數(shù)列;
(2)數(shù)列是遞增數(shù)列的充要條件是數(shù)列的各項(xiàng)均為正數(shù);
(3)若是等比數(shù)列,則的充要條件是
其中,正確命題的個數(shù)是 ( )
A.0個 B.1個 C.2個 D.3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省宿州市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
設(shè)數(shù)列的各項(xiàng)均為正數(shù),其前n項(xiàng)的和為,對于任意正整數(shù)m,n, 恒成立.
(Ⅰ)若=1,求及數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省雙流市外語學(xué)校高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
若數(shù)列的前n項(xiàng)和為,則下列命題:
(1)若數(shù)列是遞增數(shù)列,則數(shù)列也是遞增數(shù)列;
(2)數(shù)列是遞增數(shù)列的充要條件是數(shù)列的各項(xiàng)均為正數(shù);
(3)若是等差數(shù)列(公差),則的充要條件是
(4)若是等比數(shù)列,則的充要條件是
其中,正確命題的個數(shù)是( )
A.0個 B.1個 C.2個 D.3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期2月聯(lián)考理科數(shù)學(xué) 題型:選擇題
數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對于任意,總有 成等差數(shù)列。設(shè)數(shù)列的前項(xiàng)和為,且,則對任意實(shí)數(shù)(是常數(shù),)和任意正整數(shù),小于的最小正整數(shù)為( ▲ )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期11月月考文科數(shù)學(xué)卷 題型:選擇題
數(shù)列的各項(xiàng)均為正數(shù),為其前n項(xiàng)和,對于任意的,總有成等差數(shù)列,又記,數(shù)列的前n項(xiàng)和Tn=( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com