【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)若函數(shù)存在兩個零點(diǎn),,使,求的最大值.
【答案】(1)當(dāng)時,在單調(diào)遞增;當(dāng)時,在單調(diào)遞增,在單調(diào)遞減;(2)2.
【解析】
(1)對函數(shù)求導(dǎo),由x>0,進(jìn)而對和分別討論,得出的單調(diào)性.(2)函數(shù)有兩個零點(diǎn),,得,代入,令,則,設(shè),求導(dǎo)得在上的最值即可.
(1)函數(shù)的定義域?yàn)?/span>,.
當(dāng)時,,在單調(diào)遞增;
當(dāng)時,令,得,
當(dāng)時,;當(dāng)時,.
所以在單調(diào)遞增,在單調(diào)遞減.
綜上所述,當(dāng)時,在單調(diào)遞增;
當(dāng)時,在單調(diào)遞增,在單調(diào)遞減.
(2)因?yàn)?/span>,,即,.
兩式相減得,即.
由已知,得.
因?yàn)?/span>,,所以,即.
不妨設(shè),則有.
令,則,所以,即恒成立.
設(shè).
.
令,,的圖象開口向上,對稱軸方程為,
方程的判別式.
當(dāng)時,在單調(diào)遞增,,所以,
在單調(diào)遞增,所以在恒成立.
當(dāng)時,,在上恒成立,所以,
在單調(diào)遞增,所以在恒成立.
當(dāng)時,在單調(diào)遞減,因?yàn)?/span>,,
所以存在,使得
當(dāng)時,,;當(dāng)時,,,
所以在上遞增,在上遞減.
當(dāng)時,都有,
所以在不恒成立.
綜上所述,的取值范圍是,所以的最大值為2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓與軸正、負(fù)半軸分別交于點(diǎn).橢圓以為短軸,且離心率為.
(1)求的方程;
(2)過點(diǎn)的直線分別與圓,曲線交于點(diǎn)(異于點(diǎn)).直線分別與軸交于點(diǎn).若,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個開學(xué)季內(nèi),每售出盒該產(chǎn)品獲利潤元,未售出的產(chǎn)品,每盒虧損元.根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個開學(xué)季購進(jìn)了盒該產(chǎn)品,以(單位:盒,)表示這個開學(xué)季內(nèi)的市場需求量,(單位:元)表示這個開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.
(1)根據(jù)直方圖估計(jì)這個開學(xué)季內(nèi)市場需求量的眾數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(2)將表示為的函數(shù);
(3)根據(jù)直方圖估計(jì)利潤不少于元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,,是棱上的一點(diǎn).
(1)證明:平面;
(2)若平面,求的值;
(3)在(2)的條件下,三棱錐的體積是18,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時全修好;單位對學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個大致統(tǒng)計(jì),具體數(shù)據(jù)如表:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總計(jì) | |
學(xué)習(xí)雷鋒精神前 | 50 | 150 | 200 |
學(xué)習(xí)雷鋒精神后 | 30 | 170 | 200 |
總計(jì) | 80 | 320 | 400 |
求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?
請說明是否有以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神
有關(guān)?參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的有( )
A.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點(diǎn)位于第二象限
B.兩個事件相互獨(dú)立的充要條件是
C.若函數(shù)在區(qū)間上存在最小值,則實(shí)數(shù)的可能取值是
D.若隨機(jī)變量服從正態(tài)分布,且,則實(shí)數(shù)的值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小陳同學(xué)進(jìn)行三次定點(diǎn)投籃測試,已知第一次投籃命中的概率為,第二次投籃命中的概率為,前兩次投籃是否命中相互之間沒有影響.第三次投籃受到前兩次結(jié)果的影響,如果前兩次投籃至少命中一次,則第三次投籃命中的概率為,否則為.
(1)求小陳同學(xué)三次投籃至少命中一次的概率;
(2)記小陳同學(xué)三次投籃命中的次數(shù)為隨機(jī)變量,求的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)的直線與橢圓:交于不同的兩點(diǎn),其中,為坐標(biāo)原點(diǎn).
(1)若,求的面積;
(2)在軸上是否存在定點(diǎn),使得直線與的斜率互為相反數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,若直線與曲線相切.
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn)、于原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com