分析 (1)證明△PAB∽△PDA,可得$\frac{PB}{PA}$=$\frac{AB}{AD}$,同理可得$\frac{PB}{PA}$=$\frac{AB}{AD}$,問(wèn)題得以證明,
(2)根據(jù)圓內(nèi)接四邊形的性質(zhì)和三角形的面積公式可得$\frac{{S}_{△ABC}}{{S}_{△ADC}}$=$\frac{P{A}^{2}}{P{B}^{2}}$,問(wèn)題得以解決.
解答 證明:(1)∵PA是⊙O的切線,
由弦切角定理得∠PAB=∠ADB,
∵∠APB為△PAB與△PAD的公共角,
∴△PAB∽△PDA,
∴$\frac{PB}{PA}$=$\frac{AB}{AD}$,
同理$\frac{PB}{PC}$=$\frac{BC}{CD}$,
又PA=PC,
∴$\frac{AB}{AD}=\frac{BC}{CD}$,
∴AD•BC=AB•DC;
(2)由圓的內(nèi)接四邊形的性質(zhì)得∠ABC+∠ADC=π,
∴S△ABC=$\frac{1}{2}$AB•BC•sin∠ABC,
S△ADC=$\frac{1}{2}$AD•DC•sin∠ADC,
∴$\frac{{S}_{△ABC}}{{S}_{△ADC}}$=$\frac{AB•BC}{AD•DC}$=$\frac{A{B}^{2}}{A{D}^{2}}$=$\frac{P{A}^{2}}{P{B}^{2}}$=$\frac{9}{4}$
點(diǎn)評(píng) 本題考查三角形相似的判定與性質(zhì),考查圓冪定理,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | (-1,0) | C. | (-2,-1) | D. | (-6,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4個(gè) | B. | 5個(gè) | C. | 6個(gè) | D. | 7個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com