17.半徑為2的球O內(nèi)有一內(nèi)接正四棱柱(底面是正方形,側(cè)棱垂直底面),當(dāng)該正四棱柱的側(cè)面積最大時,球的表面積與該四棱柱的側(cè)面積之差是16π-16$\sqrt{2}$.

分析 設(shè)正四棱柱的底面邊長為a,高為h,則2a2+h2=16≥2$\sqrt{2}$ah,可得正四棱柱的側(cè)面積最大值,即可求出球的表面積與該四棱柱的側(cè)面積之差.

解答 解:設(shè)正四棱柱的底面邊長為a,高為h,則2a2+h2=16≥2$\sqrt{2}$ah,
∴ah≤4$\sqrt{2}$,當(dāng)且僅當(dāng)h=$\sqrt{2}$a=$\sqrt{2}$時取等號,
∴正四棱柱的側(cè)面積S=4ah≤16$\sqrt{2}$,
∴該正四棱柱的側(cè)面積最大時,h=2$\sqrt{2}$,a=2,
∴球的表面積與該四棱柱的側(cè)面積之差是4π•22-16$\sqrt{2}$=16π-16$\sqrt{2}$.
故答案為:16π-16$\sqrt{2}$.

點評 本題考查球的表面積與該四棱柱的側(cè)面積之差,考查學(xué)生的計算能力,正確運用基本不等式是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x+3|-m,m>0,f(x-3)≥0的解集為(-∞,-2]∪[2,+∞).
(Ⅰ)求m的值;
(Ⅱ)若?x∈R,使得$f(x)≥|{2x-1}|-{t^2}+\frac{3}{2}t+1$成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=ax2+b(lnx-x),g(x)=-$\frac{1}{2}x$2+(1-b)x,已知曲線y=f(x)在點(1,f(1))處的切線與直線x-y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)求函數(shù)f(x)的極值點;
(Ⅲ)若對于任意b∈(1,+∞),總存在x1,x2∈[1,b],使得f(x1)-f(x2)-1>g(x1)-g(x2)+m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知{an}是各項均為正數(shù)的等比數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,b2+b3=2a2,a3-3b2=2.
(1)求{an}和{bn}的通項公式;
(2)設(shè)數(shù)列{an}的前n項和為Sn,數(shù)列{bn}的前n項和為Tn,求Sn和Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$f(x)=({x^3}-mx)ln({x^2}+1-m)_{\;}^{\;}(m∈R)$,方程f(x)=0有3個不同的根.
(Ⅰ)求實數(shù)m的取值范圍;
(Ⅱ)是否存在實數(shù)m,使得f(x)在(0,1)上恰有兩個極值點x1,x2且滿足x2=2x1,若存在,求實數(shù)m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知a,b,m都是正數(shù),且a<b,用分析法證明$\frac{a+m}{b+m}$>$\frac{a}$;
(2)已知數(shù)列{an}的通項公式為an=$\frac{{3}^{n}-1}{2}$,n∈N*.利用(1)的結(jié)論證明如下等式:$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{a_n}<\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,PA、PC切⊙O于A、C,PBD為⊙O的割線.
(1)求證:AD•BC=AB•DC;
(2)已知PB=2,PA=3,求△ABC與△ACD的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知方程ln|x|-ax2+$\frac{3}{2}$=0有4個不同的實數(shù)根,則實數(shù)a的取值范圍是(  )
A.$({0,\frac{e^2}{2}})$B.$({0,\frac{e^2}{2}}]$C.$({0,\frac{e^2}{3}})$D.$({0,\frac{e^2}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a,b∈R+,且ab=9,則a+b的最小值為( 。
A.3B.4C.6D.9

查看答案和解析>>

同步練習(xí)冊答案