已知F是拋物線x2=4y的焦點(diǎn),P是該拋物線上的動(dòng)點(diǎn),則線段PF中點(diǎn)軌跡方程是(  )
A、x2=y-
1
2
B、x2=2y-
1
16
C、x2=2y-2
D、x2=2y-1
考點(diǎn):圓錐曲線的軌跡問題,軌跡方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由拋物線的方程求出其焦點(diǎn)坐標(biāo),設(shè)出線段PF中點(diǎn)與P點(diǎn)的坐標(biāo),由中點(diǎn)坐標(biāo)公式把P的坐標(biāo)用線段PF中點(diǎn)的坐標(biāo)表示,代入拋物線方程得答案.
解答: 解:由x2=4y,得其焦點(diǎn)坐標(biāo)為(0,1),
設(shè)線段PF中點(diǎn)為(x,y),P(x1,y1),
由中點(diǎn)坐標(biāo)公式得:
x=
x1
2
y=
y1+1
2
,
x1=2x
y1=2y-1
,
∵P是拋物線上的點(diǎn),
x12=4y1,
即4x2=4(2y-1),
∴x2=2y-1.
故選:D.
點(diǎn)評(píng):本題考查了軌跡方程的求法,訓(xùn)練了代入法求曲線的軌跡方程,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

變量x,y滿足約束條件
x-3y+2≤0
x+y-6≤0
x-y≥0
時(shí),x-2y+m≤0恒成立,則實(shí)數(shù)m的取值范圍為( 。
A、[0,+∞)
B、[1,+∞)
C、(-∞,3]
D、(-∞,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

原命題:“設(shè)a、b、c∈R,若ac2>bc2則a>b”和它的逆命題、否命題、逆否命題這四個(gè)命題中,真命題共有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),已知x≥0時(shí),f(x)=-x+1.
(1)畫出函數(shù)f(x)的圖象;寫出函數(shù)的解析式;
(2)根據(jù)圖象,寫出f(x)的單調(diào)區(qū)間;同時(shí)寫出函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=loga(x+1)的定義域和值域都為[0,1],則a的值為( 。
A、2
B、
1
2
C、3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓與雙曲線
x2
3
-
y2
2
=1有相同的焦點(diǎn)且離心率為
1
5
,則橢圓的標(biāo)準(zhǔn)方程為( 。
A、
x2
25
+
y2
20
=1
B、
x2
20
+
y2
25
=1
C、
x2
25
+
y2
5
=1
D、
x2
5
+
y2
25
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓 C1:(x+2)2+(y-2)2=4和圓C2:(x-2)2+(y-5)2=16的位置關(guān)系是( 。
A、外離B、相交C、內(nèi)切D、外切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=loga
1-mx
x-1
是奇函數(shù)(a>0且a≠1)
(1)求m的值;
(2)當(dāng)0<a<1時(shí),判斷f(x)在區(qū)間(1,+∞)上的單調(diào)性并用定義證明;
(3)當(dāng)a>1時(shí),x∈(r,a-2)時(shí),f(x)的值域是(1,+∞),求a與r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=4sin(ωx-
π
4
)sin(ωx+
π
4
)(ω>0)的最小正周期為π,且sinα=
3
5
,則f(α)=( 。
A、
7
25
B、-
14
25
C、
24
25
D、-
12
25

查看答案和解析>>

同步練習(xí)冊(cè)答案