分析 先求出圓心和半徑,比較半徑和2$\sqrt{2}$,要求 圓上至少有三個不同的點到直線l:x-y+b=0的距離為2$\sqrt{2}$,則圓心到直線的距離應小于等于$\sqrt{2}$,用圓心到直線的距離公式,可求得結果.
解答 解:圓x2+y2-4x-4y-10=0整理為(x-2)2+(y-2)2=18,
∴圓心坐標為(2,2),半徑為3$\sqrt{2}$,
要求圓上至少有三個不同的點到直線l:x-y+b=0的距離為2$\sqrt{2}$,
則圓心到直線的距離d=$\frac{|b|}{\sqrt{2}}$≤$\sqrt{2}$,
∴-2≤b≤2,
∴b的取值范圍是[-2,2],
故答案為:[-2,2].
點評 本題考查直線和圓的位置關系,圓心到直線的距離等知識,是中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 20與0.2 | B. | 5與0.8 | C. | 10與0.4 | D. | 8與0.5 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-2,2) | B. | (-2,4) | C. | ($\frac{1}{8}$,2) | D. | ($\frac{1}{8}$,4) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $1+\sqrt{3}$ | B. | $2+\sqrt{3}$ | C. | $12+6\sqrt{3}$ | D. | $4+2\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com