15.在平面直角坐標(biāo)系xOy中,圓(x-2)2+(y+1)2=1被直線(xiàn)x+2y-1=0截得的弦長(zhǎng)為$\frac{4\sqrt{5}}{5}$.

分析 求出已知圓的圓心為C,半徑r.利用點(diǎn)到直線(xiàn)的距離公式,算出點(diǎn)C到直線(xiàn)直線(xiàn)l的距離d,由垂徑定理加以計(jì)算,可得直線(xiàn)x+2y-1=0被圓截得的弦長(zhǎng).

解答 解:圓(x-2)2+(y+1)2=1的圓心為C(2,-1),半徑r=1,
∵點(diǎn)C到直線(xiàn)直線(xiàn)x+2y-1=0的距離d=$\frac{|2-2-1|}{\sqrt{1+4}}$=$\frac{\sqrt{5}}{5}$,
∴根據(jù)垂徑定理,
得直線(xiàn)x+2y-1=0被圓(x-2)2+(y+1)2=1截得的弦長(zhǎng)為2$\sqrt{1-\frac{1}{5}}$=$\frac{4\sqrt{5}}{5}$.
故答案為:$\frac{4\sqrt{5}}{5}$.

點(diǎn)評(píng) 本題給出直線(xiàn)與圓的方程,求直線(xiàn)被圓截得的弦長(zhǎng),著重考查點(diǎn)到直線(xiàn)的距離公式、圓的方程和直線(xiàn)與圓的位置關(guān)系等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{3}}{2}$,且橢圓Γ過(guò)點(diǎn)A(1,-$\frac{\sqrt{3}}{2}$),L、N為橢圓Γ上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn).
(I)求橢圓Γ的方程;
(2)已知圓Ω以原點(diǎn)為圓心,2為半徑,Q為圓Ω上的點(diǎn);記M為橢圓的右頂點(diǎn),延長(zhǎng)MN交圓Ω于P,直線(xiàn)PQ過(guò)點(diǎn)(-$\frac{6}{5}$,0).求證:直線(xiàn)NL的斜率與直線(xiàn)PQ的斜率之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若圓x2+y2-4x-4y-10=0上至少有三個(gè)不同點(diǎn)到直線(xiàn)l:x-y+b=0的距離為2$\sqrt{2}$,則b的取值范圍是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.(1)解不等式|x+1|+2|x-1|<3x+5
(2)已知a,b∈[0,1],求ab+(1-a-b)(a+b)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且滿(mǎn)足3asinC=4ccosA,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.
(Ⅰ)求△ABC的面積S;
(Ⅱ)若c=1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為$\frac{1}{2}$,粗線(xiàn)畫(huà)出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{20}{3}$B.$\frac{25}{3}$C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.(1)若x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=1,x+x-1=3;
(2)若(1)中條件不變,求x2+x-2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.一物體的運(yùn)動(dòng)方程是S=-$\frac{1}{2}$at2(a為常數(shù)),則該物體在t=t0時(shí)刻的瞬時(shí)速度為( 。
A.at0B.-at0C.$\frac{1}{2}$at0D.2at0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若b=2csinB,則sinC等于$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案