17.若|x-s|<t,|y-s|<t,則下列不等式中一定成立的是( 。
A.|x-y|<2tB.|x-y|<tC.|x-y|>2tD.|x-y|>t

分析 由題意分別解兩個絕對值不等式,根據(jù)不等式的運算性質,利用兩個同向不等式相加即可.

解答 解:∵|x-s|<t⇒-t<x-s<t  ①
∵|y-s|<t⇒-t<y-s<t⇒-t<s-y<t ②
根據(jù)不等式的性質  ①+②得
-2t<x-y<2t
∴|x-y|<2t,
故選:A.

點評 本題考查絕對值不等式的解法以及不等式性質的運用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知x=lnx,y=log52,z=e-0.5,則( 。
A.x<y<zB.x<z<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若$\overrightarrow{a}$=(2,3,-1),$\overrightarrow$=(-2,1,3),則|$\overrightarrow{a}$-$\overrightarrow$|的值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知圓C與圓D:(x-1)2+(y+2)2=4關于直線y=x對稱.
(Ⅰ) 求圓C的標準方程;
(Ⅱ)若直線l:y=kx+1與圓C交于A、B兩點,且$|{AB}|=2\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知圓O1:x2+2x+y2=0,圓O2:x2-2x+y2-8=0,動圓P與圓O1外切且和圓O2內切,圓心P的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點(1,$\frac{1}{2}$)作直線l交曲線C于A、B兩點,且點M恰好為弦AB的中點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=(x-a)|x|存在反函數(shù),則實數(shù)a=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在統(tǒng)計學中,偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計中,我們把某個同學的某科考試成績與該科班平均分的差叫某科偏差,班主任為了了解個別學生的偏科情況,對學生數(shù)學偏差x(單位:分)與物理偏差y(單位:分)之間的關系進行學科偏差分析,決定從全班56位同學中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數(shù)據(jù)如下:
學生序號12345678
數(shù)學偏差x20151332-5-10-18
物理偏差y6.53.53.51.50.5-0.5-2.5-3.5
(1)已知x與y之間具有線性相關關系,求y關于x的線性回歸方程;
(2)若這次考試該班數(shù)學平均分為118分,物理平均分為90.5,試預測數(shù)學成績126分的同學的物理成績.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$x,
參考數(shù)據(jù):$\sum_{i=1}^8{{x_i}{y_i}}$=324,$\sum_{i=1}^8{x_i^2}$=1256.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知在三角形ABC中,AB<AC,∠BAC=90°,邊AB,AC的長分別為方程${x^2}-2({1+\sqrt{3}})x+4\sqrt{3}=0$的兩個實數(shù)根,若斜邊BC上有異于端點的E,F(xiàn)兩點,且EF=1,∠EAF=θ,則tanθ的取值范圍為( 。
A.$({\frac{{\sqrt{3}}}{3},\frac{{4\sqrt{3}}}{11}}]$B.$({\frac{{\sqrt{3}}}{9},\frac{{\sqrt{3}}}{3}})$C.$({\frac{{\sqrt{3}}}{9},\frac{{4\sqrt{3}}}{11}}]$D.$({\frac{{\sqrt{3}}}{9},\frac{{2\sqrt{3}}}{11}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在△ABC中,P、Q分別在AB,BC上,且$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{BQ}$=$\frac{1}{3}$$\overrightarrow{BC}$,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{PQ}$=( 。
A.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$B.-$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$C.$\frac{1}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow$D.-$\frac{1}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow$

查看答案和解析>>

同步練習冊答案