12.設(shè)函數(shù)y=lnsinex,則dy=$\frac{{e}^{x}cos{e}^{x}}{sin{e}^{x}}$dx.

分析 由(lnsinex)′=$\frac{{e}^{x}cos{e}^{x}}{sin{e}^{x}}$,即可得出.

解答 解:∵(lnsinex)′=$\frac{{e}^{x}cos{e}^{x}}{sin{e}^{x}}$,
∴dy=$\frac{{e}^{x}cos{e}^{x}}{sin{e}^{x}}$dx,
故答案為:$\frac{{e}^{x}cos{e}^{x}}{sin{e}^{x}}$dx.

點(diǎn)評 本題考查了復(fù)合函數(shù)導(dǎo)數(shù)的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知an=logn+1(n+2)(n∈N*),若稱使乘積a1×a2×a3×…×an為整數(shù)的數(shù)n為劣數(shù),則在區(qū)間(1,2002)內(nèi)所有的劣數(shù)的和為( 。
A.2026B.2046C.1024D.1022

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=3-cos$\frac{1}{2}$x的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,最小值為2的( 。
A.y=x+$\frac{1}{x}$B.y=$\sqrt{{x}^{2}+5}$+$\frac{1}{\sqrt{{x}^{2}+5}}$
C.y=$\frac{sinx}{2}$+$\frac{2}{sinx}$(0<x<π)D.y=logab+logba(a>1,b>1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)點(diǎn)M(x1,f(x1))和點(diǎn)N(x2,g(x2))分別是函數(shù)f(x)=ex-$\frac{1}{2}$x2和g(x)=x-1圖象上的點(diǎn),且x1≥0,x2>0,若直線MN∥x軸,則M,N兩點(diǎn)間的距離的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“a=1”是“函數(shù)f(x)=x2-2ax+b在區(qū)間[1,+∞)上為增函數(shù)”的( 。
A.既不充分也不必要條件B.必要不充分條件
C.充要條件D.充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.不等式$\frac{6}{x+1}$≥1成立的一個(gè)充分不必要條件是( 。
A.-2<x<6B.-1<x≤5C.-2<x<-1D.-1<x<5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(文)已知指數(shù)函數(shù)y=f(x)的圖象過點(diǎn)(2,4),若f(m)=16,則m=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)z滿足$\frac{1+i}{1-i}$•z=3+4i,則|z|=(  )
A.2$\sqrt{6}$B.$\sqrt{7}$C.5$\sqrt{2}$D.5

查看答案和解析>>

同步練習(xí)冊答案