.(12分)(理)拋物線y=ax2+bx在第一象限內(nèi)與直線x+y=4相切.此拋物線與x軸所圍成的圖形的面積記為S.求使S達(dá)到最大值的a、b值,并求Smax

 

 

【答案】

(理)解:依題設(shè)可知拋物線為凸形,它與x軸的交點的橫坐標(biāo)分別為x1=0,x2=-b/a,所以

(1)

又直線x+y=4與拋物線y=ax2+bx相切,即它們有唯一的公共點,

由方程組

得ax2+(b+1)x-4=0,其判別式必須為0,即(b+1)2+16a=0.

于是代入(1)式得:

,; 

令S'(b)=0;在b>0時得唯一駐點b=3,且當(dāng)0<b<3時,S'(b)>0;當(dāng)b>3時,S'(b)<0.故

在b=3時,S(b)取得極大值,也是最大值,即a=-1,b=3時,S取得最大值,且。

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(x1,y1),B(x2,y2)是拋物線y=2x2上的兩點,直線l是AB的垂直平分線.
(理)當(dāng)直線l的斜率為
1
2
時,則直線l在y軸上截距的取值范圍是
5
4
,+∞)
5
4
,+∞)

(文)當(dāng)且僅當(dāng)x1+x2
0
0
值時,直線l過拋物線的焦點F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•青浦區(qū)二模)(理)已知A、B是拋物線y2=4x上的相異兩點.
(1)設(shè)過點A且斜率為-1的直線l1,與過點B且斜率為1的直線l2相交于點P(4,4),求直線AB的斜率;
(2)問題(1)的條件中出現(xiàn)了這樣的幾個要素:已知圓錐曲線Γ,過該圓錐曲線上的相異兩點A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點;結(jié)論是關(guān)于直線AB的斜率的值.請你對問題(1)作適當(dāng)推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點Q(x0,0).若x0=5,試用線段AB中點的縱坐標(biāo)表示線段AB的長度,并求出中點的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年周至二中四模理) 已知曲線f(x)=x3+x2+x+3在x= -1處的切線恰好與拋物線y=2px2相切,則過該拋物線的焦點且垂直于對稱軸的直線與拋物線相交得的線段長度為             (    )

A.4                  B.                 C.8                  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009山東卷理)設(shè)雙曲線的一條漸近線與拋物線y=x+1 只有一個公共點,則雙曲線的離心率為(     ).      

A.           B. 5      C.           D.

查看答案和解析>>

同步練習(xí)冊答案