f(x)在定義域(0,+∞)上單調(diào)遞增,則不等式f(x)>f[8(x-2)]的解集是( 。
A、(0,
16
7
B、(-∞,
16
7
C、(2,
16
7
D、(
16
7
,+∞)
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x)在定義域(0,+∞)上單調(diào)遞增,可將不等式f(x)>f[8(x-2)]化為x>8(x-2)>0,解得即可.
解答: 解:∵f(x)在定義域(0,+∞)上單調(diào)遞增,
∴不等式f(x)>f[8(x-2)]化為x>8(x-2)>0,
解得:x∈(2,
16
7
),
故選:C
點(diǎn)評:本題考查函數(shù)單調(diào)性的應(yīng)用,難度不大,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2-4x+6,x≥0
x+6,x<0
,則不等式f(x)>3的解集是( 。
A、(-3,0)∪(3,+∞)
B、(-3,1)∪(2,+∞)
C、(-1,1)∪(3,+∞)
D、(-∞,-3)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由0,1,2,3,4,5組成的四位偶數(shù)(沒有重復(fù)數(shù)字)共有( 。﹤(gè).
A、180B、156
C、150D、144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+x-2,則函數(shù)f(x)在區(qū)間[-1,1)上( 。
A、最大值為0,最小值為-
9
4
B、最大值為0,最小值為-2
C、最大值為0,無最小值
D、無最大值,最小值為-
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓柱的軸截面是邊長為10的正方形,則圓柱的側(cè)面積為( 。
A、50πB、100π
C、125πD、100+25π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,E是正方體AC1的棱AA1上的中點(diǎn),則直線BE、A1C1的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)結(jié)論:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②命題“若am2<bm2,則a<b”的逆命題為真命題;
③數(shù)列{an}為等差數(shù)列的充要條件是:對任意n∈N*,an+an+2=2an+1
④對于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且當(dāng)x>0時(shí),f′(x)>0,g′(x)>0,則當(dāng)x<0時(shí),f′(x)>g′(x).
其中正確結(jié)論共有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={1,2,3,4,5,6,7},P={1,2,3,4,5},Q={3,4,5,6,7},則P∪(∁UQ)=( 。
A、{1,2}
B、{3,4,5}
C、{1,2,6,7}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=1,b=9,則a,b的等比中項(xiàng)為 (  )
A、3B、±3C、-3D、9

查看答案和解析>>

同步練習(xí)冊答案