已知曲線y=
1
3
x3+
1
2
x2+4x-7在點(diǎn)Q處的切線的傾斜角α滿足sin2α=
16
17
,則此切線的方程為( 。
A.4x-y+7=0或4x-y-6
5
6
=0
B.4x-y-6
5
6
=0
C.4x-y-7=0或4x-y-6
5
6
=0
D.4x-y-7=0
∵sin2α=
16
17
,
∴cos2α=
1
17
,
∴tan2α=16,
∴tanα=±4,
∵y=
1
3
x3+
1
2
x2+4x-7,
∴y′=x2+x+4,
∴x2+x+4=4或x2+x+4=-4,
解得x=0或x=-1,
∴切點(diǎn)為(0,-7)或(-1,-10
5
6
),
∴切線的方程為4x-y-7=0或4x-y-6
5
6
=0.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線y=x3+1在點(diǎn)(-1,0)處的切線方程為(  )
A.3x+y+3=0B.3x-y+3=0C.3x-y=0D.3x-y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x3-2x2-4x-7,其導(dǎo)函數(shù)為f′(x).
①f(x)的單調(diào)減區(qū)間是(
2
3
,2)

②f(x)的極小值是-15;
③當(dāng)a>2時,對任意的x>2且x≠a,恒有f(x)>f(a)+f′(a)(x-a)
④函數(shù)f(x)滿足f(
2
3
-x)+f(
2
3
+x)=0

其中假命題的個數(shù)為(  )
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-4x2+5x-4.
(1)求曲線f(x)在x=2處的切線方程;
(2)求經(jīng)過點(diǎn)A(2,-2)的曲線f(x)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)曲線f(x)=
1
3
x3-
a
2
x2+1
(其中a>0)在點(diǎn)(x1,f(x1))及(x2,f(x2))處的切線都過點(diǎn)(0,2).證明:當(dāng)x1≠x2時,f′(x1)≠f′(x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x3-3x2+3.
(1)求曲線y=f(x)在點(diǎn)x=2處的切線方程;
(2)若關(guān)于x的方程f(x)+m=0有三個不同的實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知某質(zhì)點(diǎn)的運(yùn)動方程為s(t)=t3+bt2+ct+d,如圖是其運(yùn)動軌跡的一部分,若t∈[
1
2
,4]時,s(t)<3d2恒成立,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

lim
△x→0
f(x0+2△x)-f(x0)
△x
=1,則f′(x0)等于( 。
A.2B.-2C.
1
2
D.-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

己知函數(shù)f(x)=ax3+bx2+c,其導(dǎo)數(shù)f′(x)的圖象如圖所示,則函數(shù)f(x)的極大值是( 。
A.a(chǎn)+b+cB.8a+4b+cC.3a+2bD.c

查看答案和解析>>

同步練習(xí)冊答案