13.經(jīng)過點(-1,3)且平行于y軸的直線方程為x=-1.

分析 經(jīng)過點M(-1,3)且平行于y軸的直線上所有點的橫坐標(biāo)為-1,于是得到此直線為x=-1.

解答 解:經(jīng)過點M(-1,3)且平行于y軸的直線為x=-1.
故答案為x=-1.

點評 本題考查了坐標(biāo)與圖形性質(zhì),考查平行直線方程的求法,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,體積為$\frac{9}{4}$,底面的邊長都為$\sqrt{3}$,若P為底面A1B1C1的中心,則PA與平面ABC所成角的大小為(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知A是單位圓O上的一個動點,且點A在第一象限.B是圓O與x軸正半軸的交點,記∠AOB=α,若點A在直線4x-3y=0上,求$\frac{si{n}^{2}(α-π)+sin(\frac{3π}{2}+α)}{co{s}^{2}(\frac{5π}{2}+α)+cos(-\frac{3π}{2}+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.正方體ABCD-A1B1C1D1中,若$\overrightarrow{A{C_1}}$=x($\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{C{C_1}}$),則實數(shù)x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若直線a平行于平面α,則下列結(jié)論正確的是( 。
A.直線a一定與平面α內(nèi)所有直線平行
B.直線a一定與平面α內(nèi)所有直線異面
C.直線a一定與平面α內(nèi)唯一一條直線平行
D.直線a一定與平面α內(nèi)一組平行直線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={0,1,2,3,4,5},B={1,3,6,9},C={3,7,8},則(A∩B)∪C=(
A.{3}B.{3,7,8}C.{1,3,7,8}D.{1,3,6,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.把函數(shù)y=sinx(x∈R)的圖象上所有的點向左平行移動$\frac{π}{6}$個單位長度,再把所得圖象上所有點的橫坐標(biāo)縮短到原來的$\frac{1}{2}$(縱坐標(biāo)不變),得到的圖象所表示的函數(shù)是(  )
A.$y=sin(2x-\frac{π}{6})$,x∈RB.$y=sin(\frac{x}{2}+\frac{π}{12})$,x∈RC.$y=sin(2x+\frac{π}{6})$,x∈RD.$y=sin(2x+\frac{π}{3})$,x∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若(x2+$\frac{1}{x}$)n的二項展開式中,所以二項式系數(shù)之和為64,則n=6;該展開式中的常數(shù)項為15(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中,既是奇函數(shù)又是減函數(shù)的為( 。
A.y=x+1B.y=-x2C.$y=\frac{1}{x}$D.y=-x|x|

查看答案和解析>>

同步練習(xí)冊答案