4.已知A是單位圓O上的一個(gè)動(dòng)點(diǎn),且點(diǎn)A在第一象限.B是圓O與x軸正半軸的交點(diǎn),記∠AOB=α,若點(diǎn)A在直線4x-3y=0上,求$\frac{si{n}^{2}(α-π)+sin(\frac{3π}{2}+α)}{co{s}^{2}(\frac{5π}{2}+α)+cos(-\frac{3π}{2}+α)}$的值.

分析 根據(jù)題意求得tanα=$\frac{4}{3}$,結(jié)合誘導(dǎo)公式對(duì)$\frac{si{n}^{2}(α-π)+sin(\frac{3π}{2}+α)}{co{s}^{2}(\frac{5π}{2}+α)+cos(-\frac{3π}{2}+α)}$進(jìn)行化簡(jiǎn),代入求值.

解答 解:∵直線4x-3y=0的斜率為$\frac{4}{3}$,
∴tanα=$\frac{4}{3}$,
∴點(diǎn)A在第一象限.B是圓O與x軸正半軸的交點(diǎn),
∴sinα=$\frac{4}{5}$,cosα=$\frac{3}{5}$,
∴$\frac{si{n}^{2}(α-π)+sin(\frac{3π}{2}+α)}{co{s}^{2}(\frac{5π}{2}+α)+cos(-\frac{3π}{2}+α)}$=$\frac{si{n}^{2}α-cosα}{si{n}^{2}α-sinα}$=$\frac{(\frac{4}{5})^{2}-\frac{3}{5}}{(\frac{4}{5})^{2}-\frac{4}{5}}$=-$\frac{7}{4}$.

點(diǎn)評(píng) 本題主要考察了同角三角函數(shù)關(guān)系式,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2x+a,g(x)=$\frac{1}{{{2^{|x|}}}}$+2.
(1)求函數(shù)g(x)的值域;
(2)若a=0,求滿足方程f(x)-g(x)=0的x的值.
(3)?x0∈[1,2],f(x)+g(x)≥0成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=$\left\{{\begin{array}{l}{2cosπx,-1<x<0}\\{{e^{2x-1}},x≥0}\end{array}}$滿足f(${\frac{1}{2}}$)+f(a)=2,則a的所有可能值為( 。
A.$1或-\frac{1}{3}$B.$\frac{1}{2}或1$C.1D.$\frac{1}{2}或-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)f(x)=a-$\frac{2}{{{2^x}+1}}$,x∈R,(其中a為常數(shù)).
(1)若f(x)為奇函數(shù),求a的值;
(2)若不等式f(x)+a>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知關(guān)于x的方程|2x-a|=1有兩個(gè)不相等的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)全集I=R,集合A={y|y=log2x,x>2},B={y|y≥1},則( 。
A.A∪B=AB.A⊆BC.A∩B=∅D.A∩(∁IB)≠∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點(diǎn)A(2,3,5),B(3,1,4),則A,B兩點(diǎn)間的距離為( 。
A.$\sqrt{2}$B.$\sqrt{6}$C.$3\sqrt{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.經(jīng)過點(diǎn)(-1,3)且平行于y軸的直線方程為x=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知圓C:x2+y2=4,直線l:y=x+b,若圓C上恰有4個(gè)點(diǎn)到直線l的距離都等于1,則b的取值范圍是$-\sqrt{2}<b<\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案