18.若一個空間幾何體的三視圖如圖所示,且已知該幾何體的體積為$\frac{\sqrt{3}}{6}π$,則其表面積為( 。
A.$\frac{3}{2}π+\sqrt{3}$B.$\frac{3}{2}π$C.$\frac{3}{4}π+2\sqrt{3}$D.$\frac{3}{4}π+\sqrt{3}$

分析 由已知中的三視圖,可得該幾何體是一個以俯視圖為底面的半圓錐,進而可得答案.

解答 解:由已知中的三視圖,可得該幾何體是一個以俯視圖為底面的半圓錐,
底面面積S=$\frac{1}{2}{πr}^{2}$,
高h=$\sqrt{3}r$,
故體積V=$\frac{1}{3}Sh$=$\frac{\sqrt{3}}{6}{πr}^{3}$=$\frac{\sqrt{3}}{6}π$,
解得:r=1,
故圓錐的母線長l=$\sqrt{{\sqrt{3}}^{2}+{1}^{2}}$=2,
故半圓錐的表面積S=$\frac{1}{2}πr(r+l)+\frac{1}{2}×2rh$=$\frac{3}{2}π+\sqrt{3}$.
故選:A

點評 本題考查的知識點是圓錐的體積和表面積,簡單幾何體的三視圖,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.某公司的班車在7:00,8:00,8:30發(fā)車,小明在7:50至8:30之間到達發(fā)車站乘坐班車,且到達發(fā)車站的時刻是隨機的,則他等車時間不超過10分鐘的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列有關(guān)向量的說法:
①若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$;
②若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$在$\overrightarrow$上的投影為|$\overrightarrow{a}$|;
③若向量$\overrightarrow{a}$=(λ,2λ)與$\overrightarrow$=(3λ,2)的夾角為銳角,則λ<-$\frac{4}{3}$或λ>0;
④若O為△ABC內(nèi)一點,且$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,則S△AOB:S△AOC:S△BOC=3:2:1.
其中,錯誤命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若x0是函數(shù)f(x)=-x3-3x+5的零點,則x0所在的一個區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知集合A={x|x2-2x-3<0},B={x|2a-1<x<a+1},a∈R.
(Ⅰ)若B⊆A,求實數(shù)a的取值范圍;
(Ⅱ)設(shè)函數(shù)$f(x)=4sin(2x+\frac{π}{3})+1$,若實數(shù)x0滿足f(x0)∈A,求實數(shù)x0取值的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知向量$\overrightarrow{a}$與$\overrightarrow$滿足$\overrightarrow{a}$=(2,0),|$\overrightarrow$|=1,若|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{7}$,則a與b的夾角是$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知O,F(xiàn)分別為雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的中心和右焦點,點G、M分別在E的漸近線和右支上,若$\overrightarrow{FG}$•$\overrightarrow{OG}$=0,GM∥x軸,|OM|=|OF|,則E的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖所示,四棱錐P-ABCD的側(cè)面PAD是邊長為2的正三角形,底面ABCD是∠ABC=60°的菱形,M為PC的中點,PC=$\sqrt{6}$.
(Ⅰ)求證:PC⊥AD;
(Ⅱ)求三棱錐M-PAB的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若函數(shù)f(x)=2ax2-x-1在(0,1)內(nèi)恰有一個零點,則實數(shù)a的取值范圍是( 。
A.(-1,1)B.[1,+∞)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

同步練習冊答案