A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
分析 如圖所示,過點A在平面ABC內(nèi)作AO⊥BC,垂足為點O,連接OD.根據(jù)三角形ABC和三角形DBC所在平面互相垂直,可得AO⊥平面BCD,AO⊥OD.因此∠ADO是直線AD與平面BCD所成的角.通過證明△OBA≌△OBD,即可得出.
解答 解:如圖所示,過點A在平面ABC內(nèi)作AO⊥BC,垂足為點O,連接OD.
∵三角形ABC和三角形DBC所在平面互相垂直,∴AO⊥平面BCD,∴AO⊥OD.
∴∠ADO是直線AD與平面BCD所成的角.
∵AB=BD,∠CBA=∠CBD=$\frac{2π}{3}$,
∴∠ABO=∠DBO,又OB公用,
∴△OBA≌△OBD,
∴∠BOD=∠AOB=$\frac{π}{2}$.OA=OD.
∴∠$ADO=\frac{π}{4}$.
故選:B.
點評 本題考查了空間線面面面垂直的判定與性質(zhì)定理、空間角、三角形全等判定與性質(zhì)定理,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{10}}{10}$ | B. | $\frac{\sqrt{30}}{10}$ | C. | $\frac{2\sqrt{15}}{10}$ | D. | $\frac{3\sqrt{10}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
X | 0 | 1 | 2 | 3 | 4 |
P | 0.2 | 0.1 | 0.1 | 0.3 | 0.3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | an=4×($\frac{3}{2}$)n | B. | an=4×($\frac{3}{2}$)n-1 | C. | an=4×($\frac{2}{3}$)n | D. | an=4×($\frac{2}{3}$)n-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,+∞) | B. | (-4,+∞) | C. | (-2,+∞) | D. | (-4,-2)∪(2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com