若函數(shù)f(x)=lnx+2x-6的零點(diǎn)為x0,則滿足x0∈(k,k+1)且k為整數(shù),則k=
 
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)零點(diǎn)的存在條件,即可得到結(jié)論.
解答: 解:∵函數(shù)的定義域?yàn)椋?,+∞),且函數(shù)單調(diào)遞增,
∴f(2)=ln2+4-6=ln2-2<0,
f(3)=ln3+6-6=ln3>0,
即函數(shù)f(x)在(2,3)內(nèi)存在唯一的一個(gè)零點(diǎn),
∵x0∈(k,k+1)且k為整數(shù),
∴k=2,
故答案為:2
點(diǎn)評(píng):本題主要考查函數(shù)零點(diǎn)的判斷,根據(jù)零點(diǎn)存在條件是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若不等式a≤x2-4x對(duì)任意x∈[0,4]恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,an=
an-1
2an-1+1
(n≥2).
(1)求a2、a3、a4的值;
(2)猜測an的表達(dá)式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin(2x+
π
2
)是(  )
A、周期為π的偶函數(shù)
B、周期為π的奇函數(shù)
C、周期為2π的偶函數(shù)
D、周期為2π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足不等式組 
x-y≥0
2x-y-10≤0
3
x+y-5
3
≥0
,則2x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax+1(a>0且a≠1)的圖象過定點(diǎn)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一圓C的圓心為(2,-1),且該圓被直線l:x-y-1=0截得的弦長為2
2

(Ⅰ)求該圓的方程
(Ⅱ)求過點(diǎn)P(4,3)的該圓的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求不等式a2x-1>ax+2(a>0,且a≠1)中x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各式
(1)
3xy2
6x5
4y3
(x>0,y>0)(結(jié)果用指數(shù)表示)
(2)log84+log26-log23+log36•log69-lg100+2-log23

查看答案和解析>>

同步練習(xí)冊(cè)答案