分析 推導出b1+b2017=b9+b2009=log2a9+log2a2009=log2(a9•a2009)=log24=2,由此能求出b1+b2+b3+…+b2017的值.
解答 解:∵數(shù)列{an}、{bn}滿足${b_n}={log_2}{a_n},n∈{N^*}$,其中{bn}是等差數(shù)列,且a9a2009=4,
∴b1+b2017=b9+b2009=log2a9+log2a2009
=log2(a9•a2009)=log24=2,
∴b1+b2+b3+…+b2017=(b1+b2017)+(b2+b2016)+…+(b1008+b1010)+b1009
=2×1008+1=2017.
故答案為:2017.
點評 本題考查等差數(shù)列的前2017項和的求法,考查等差數(shù)列對數(shù)性質(zhì)等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1) | B. | (-1,0] | C. | (-∞,1) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-e-$\frac{1}{e}$) | B. | (-∞,e+$\frac{1}{e}$) | C. | (-e-$\frac{1}{e}$,+∞) | D. | (-∞,-e-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com